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Motivation

* In Topic 3, we will be dealing with the kinematic & dynamic
modeling fixed-base open chain manipulators.
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Fixed-base open chain Fixed-base closed chain Floating-base open chain




Motivation

« Majority of robotic systems can be modeled as several rigid bodies
connected by ideal joints.

* An ideal joint (aka kinematic pair) is a purely kinematic relation
between two rigid bodies restricting the relative twist 1,"*.

* The degrees of freedom (DoF) of a joint is the number of
independent coordinates of 1,"*.

Prismatic joint (1 DoF) Spherical joint (3 DoF)



Forward Kinematics

* The forward kinematics of a robot refers to the calculation of the
position and orientation of its end-effector frame from its joint
coordinates.

» Consider, the 3R planar open chain below.
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Forward Kinematics

* The forward kinematics of a robot refers to the calculation of the
position and orientation of its end-effector frame from its joint
coordinates.

» Consider, the 3R planar open chain below.
» The pose of the end-effector’s frame {4} is given by:
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Forward Kinematics

A systematic way to derive the forward kinematics map
(01,0,,03) — Hf

IS to attach a reference frame to each link {1},{2}, {3}.

* Then we have that:
Hff — Hf (91)H21 (92)H32 (93)1'12

{0}

NN N NN




Forward Kinematics

A systematic way to derive the forward kinematics map
(01,0,,03) — Hf

IS to attach a reference frame to each link {1},{2}, {3}.

* Then we have that:
Hff — Hf (91)H21 (92)H32 (93)1'12

A widely used convention for choosing thee body-
fixed frames {1},{2}, {3} is based on the so-called
Denavit—Hartenberg parameters (D—H parameters).
We will use a more powerful approach based on the
screw-theory interpretation of twists.
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Recall linear ODE theory

« Consider the scalar linear ordinary differential equation (ODE):
x(t) = a x(t),

where x(t) € R and a € R is a constant.

* The solution to the ODE above is given by
x(t) = e*x(0),

where the exponential function is defined as the series:

(at)? . (at)?

21 3 T

e =1+ at+




Recall linear ODE theory

 Similarly, consider the vector linear ODE:
x(t) = A x(t),

where x(t) € R® and 4 € R™™" js constant.
* The solution to the ODE above is given by
x(t) = et x(0),

where the matrix exponential function is defined as the series:

(At)*  (At)’
T TR

edl = + At +




Exponential coordinates of Rotations

« Suppose that a frame {b} with unit axes {X,, V,, Z,} is attached to a
rotating body.

* The angular velocity vector descrlblng the instantaneous rotation of
{b} relative to {s}is given by w; =710 € R3.
 The instantaneous rate of change of R; € SO(3) is given by

~S,S
RS = @, Rj,




Exponential coordinates of Rotations

- Assume that w;”° = 7;”° is a constant unit vector with § = 1 and thus
@, is also constant.

- The solution to Rj = @, R; then becomes

RS(6) = e tRE(0) 75 = S(AS) € s0(3)

* Intuitively, this is the rotation matrix reached from R; (0) by rotating
It around @ at a constant 1 rad/s for t seconds.




Exponential coordinates of Rotations

- Assume that w;”° = 7;”° is a constant unit vector with § = 1 and thus
@, is also constant.

- The solution to Rj = @, R; then becomes

RS(6) = e tRE(0) 75 = S(AS) € s0(3)

* Intuitively, this is the rotation matrix reached from R; (0) by rotating
It around @ at a constant 1 rad/s for t seconds.

Note that since 8 = 1, we have that

t t
0(t)=f9dt=Jdt=t
0 0




Exponential coordinates of Rotations

* By replacing t with 8, we have that

R5(6) = ™ °R5(0)

which is intuitively the rotation matrix achieved by rotating R; (0)
around the axis 7y~ by an angle 6.

The pair (;,0) € $* x [—m, ] is called the exponential coordinates
or axis-angle representation of a rotation matrix R € SO(3)




Exponential map of SO(3)

* The exponential map
exp: so(3) — 50(3)

~S,S
')’lb - e b

maps elements of the Lie algebra to elements of the Lie group.

* |t IS surjective, but not injective
e VR € S0(3), I € s0(3) s.t. R = e"
° Hﬁl, ﬁz (S IRS with ﬁ’l == ﬁz S. t. eﬁl — eﬁz




Exponential map of SO(3)

* The exponential map
exp: so(3) — 50(3)

~S,S
')’lb - e b

maps elements of the Lie algebra to elements of the Lie group.

Given any pair (7,0) € $* x [—m, ], the matrix exponential
e € S0(3) of 8 € so(3), with 7 := S(7), is given by:

e =, +sin@ 7 + (1 — cos 0)ii?

Rodrigues’s formula

7o ‘ For the proof, see Pg. 83-84 of Lynch & Park




Elementary rotations

* Rotations about the coordinate frame axes are given by:

1 0 0
Rot(x,0) = | 0 cosf) —sinf
0 sinfl cosf

cos/ 0 smé
Rot(v.0) = 0 | 0
—smf 0 cosft

cosf —sinf 0 ]
Rot(z,0) = | smmfl cost 0O
() () 1

Rot(#,0) = e™ € S0(3)




Roll-Pitch-Yaw Angles

 The roll-pitch—yaw angles refer to the angles in a sequence of
rotations about axes fixed in the space frame

R(a,B.,v) = Rot(z, a)Rot(y, B)Rot(x,~)I

Co —So O cg 0 sp 1 0 0
= See Co O 0 1 0 0 ¢, —s, ([
0 0 1 —sg 0 cp 0 s, ¢,

CaCB  CaSBSy — SaCy  CaSRCy T SaSy
= SaCB  SaSpSy + CaCry  SaSaC~ — CaSy

—S3 C3S~ C3C




Screw Interpretation of Twists

- Just as an angular velocity w; can be viewed as 76 € R where
i3 1s the unit rotation axis and @ is the rate of rotation about it,

» Atwist V; can interpreted in terms of a screw axis S;; € R° and a
velocity 6 about the screw axis



Screw Interpretation of Twists

» We define the screw axis S§ and 6 in the following manner:
a) Pure translation
0
55 = (a) € °°
i3 is the translation axis

6 is the linear velocity along the screw axis



Screw Interpretation of Twists

» We define the screw axis S§ and 6 in the following manner:
b) Pure rotation
,ﬁS
55:( P >ER6,
—np A q
3 is the rotation axis

6 is the angular velocity around the screw axis Zp
g 1S any point on the screw axis s

?‘ g For athird type (screw motion), see Pg. 102-04 of Lynch & Park Ve



Exp. coordinates of homogeneous transformations

By analogy to the exponential coordinates (73, 6) for rotations, we
can define the six-dimensional exponential coordinates of a
homogeneous transformation H; by §;6 € R°® such that

H(9) = e5v O H5 (0)

where S, € se(3) is the matrix representation of S; € R®



Exponential map of SE(3)

* The exponential map
exp: se(3) — SE(3)

cS,S

- S
S,° - e

maps elements of the Lie algebra to elements of the Lie group.

* |t IS surjective, but not injective
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* Product of Exponentials (PoE) formula
« Examples
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