SCE 594: Special Topics in Intelligent Automation & Robotics

Topic 3: Fixed-base manipulator modeling

Lecture 11: Forward Kinematics

Outline

- Motivation
- Exponential coordinates & Exponential map
- Product of Exponentials (PoE) formula
- Examples

Outline

- Motivation
- Exponential coordinates & Exponential map
- Product of Exponentials (PoE) formula
- Examples

Motivation

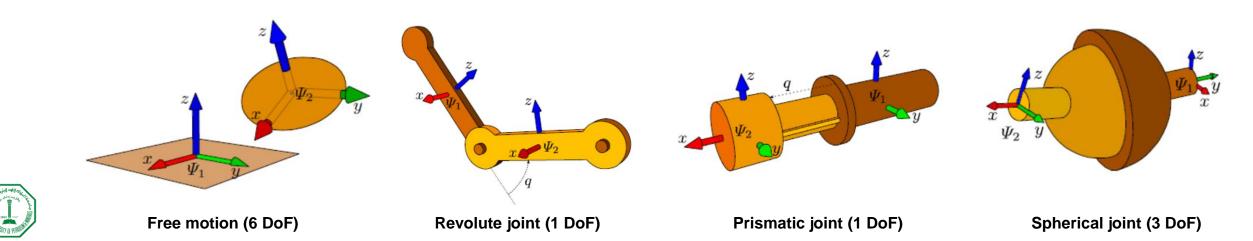
 In Topic 3, we will be dealing with the kinematic & dynamic modeling fixed-base open chain manipulators.

Fixed-base closed chain

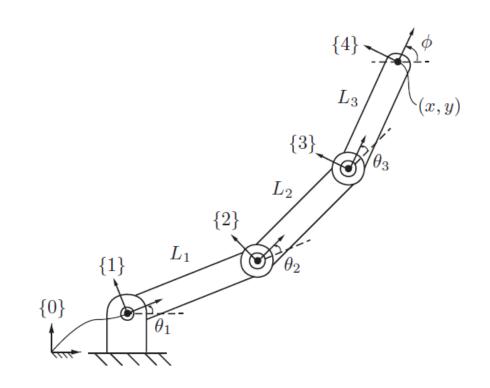
Floating-base open chain

Motivation

- Majority of robotic systems can be modeled as several rigid bodies connected by ideal joints.
- An ideal joint (aka kinematic pair) is a purely kinematic relation between two rigid bodies restricting the relative twist $\mathcal{V}_1^{*,2}$.
- The degrees of freedom (DoF) of a joint is the number of independent coordinates of $\mathcal{V}_1^{*,2}$.



- The forward kinematics of a robot refers to the calculation of the position and orientation of its end-effector frame from its joint coordinates.
- Consider, the 3R planar open chain below.



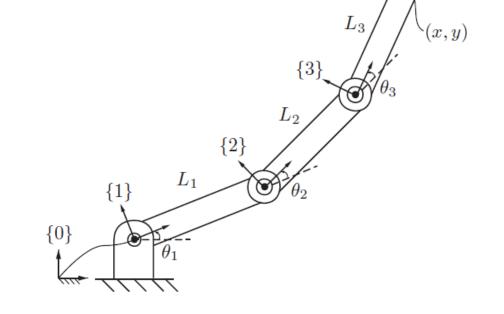
- The forward kinematics of a robot refers to the calculation of the position and orientation of its end-effector frame from its joint coordinates.
- Consider, the 3R planar open chain below.
- The pose of the end-effector's frame {4} is given by:

$$H_4^0 = \begin{pmatrix} c_{\phi} & -s_{\phi} & 0 & x \\ s_{\phi} & c_{\phi} & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) + L_3 \cos(\theta_1 + \theta_2 + \theta_3),$$

$$y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2) + L_3 \sin(\theta_1 + \theta_2 + \theta_3),$$

$$\phi = \theta_1 + \theta_2 + \theta_3.$$

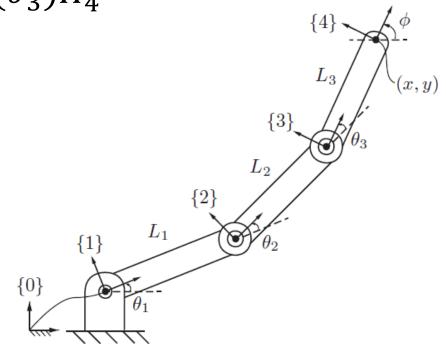


• A systematic way to derive the forward kinematics map $(\theta_1, \theta_2, \theta_3) \mapsto H_4^0$

is to attach a reference frame to each link $\{1\}$, $\{2\}$, $\{3\}$.

Then we have that:

$$H_4^0 = H_1^0(\theta_1)H_2^1(\theta_2)H_3^2(\theta_3)H_4^3$$



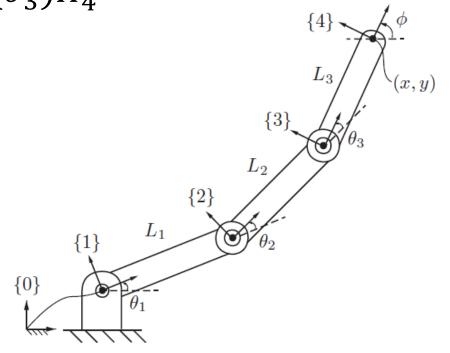
• A systematic way to derive the forward kinematics map $(\theta_1, \theta_2, \theta_3) \mapsto H_4^0$

is to attach a reference frame to each link $\{1\}$, $\{2\}$, $\{3\}$.

Then we have that:

$$H_4^0 = H_1^0(\theta_1)H_2^1(\theta_2)H_3^2(\theta_3)H_4^3$$

A widely used convention for choosing thee body-fixed frames {1}, {2}, {3} is based on the so-called Denavit—Hartenberg parameters (D–H parameters). We will use a more powerful approach based on the screw-theory interpretation of twists.



Outline

- Motivation
- Exponential coordinates & Exponential map
- Product of Exponentials (PoE) formula
- Examples

Recall linear ODE theory

• Consider the scalar linear ordinary differential equation (ODE): $\dot{x}(t) = a \; x(t)$.

where $x(t) \in \mathbb{R}$ and $a \in \mathbb{R}$ is a constant.

The solution to the ODE above is given by

$$x(t) = e^{at}x(0),$$

where the exponential function is defined as the series:

$$e^{at} = 1 + at + \frac{(at)^2}{2!} + \frac{(at)^3}{3!} + \cdots$$

Recall linear ODE theory

Similarly, consider the vector linear ODE:

$$\dot{x}(t) = A x(t),$$

where $x(t) \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$ is constant.

The solution to the ODE above is given by

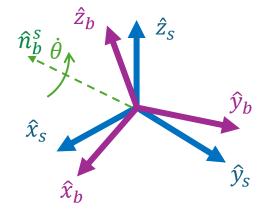
$$x(t) = e^{At}x(0),$$

where the matrix exponential function is defined as the series:

$$e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \cdots$$

- Suppose that a frame $\{b\}$ with unit axes $\{\hat{x}_b, \hat{y}_b, \hat{z}_b\}$ is attached to a rotating body.
- The angular velocity vector describing the instantaneous rotation of $\{b\}$ relative to $\{s\}$ is given by $\omega_b^s \coloneqq \hat{n}_b^s \dot{\theta} \in \mathbb{R}^3$.
- The instantaneous rate of change of $R_h^s \in SO(3)$ is given by

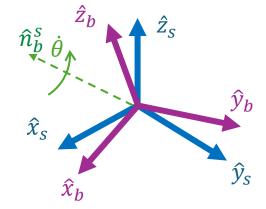
$$\dot{R}_b^s = \widetilde{\omega}_b^{s,s} R_b^s$$



- Assume that $\omega_b^{s,s}=\hat{n}_b^{s,s}$ is a constant unit vector with $\dot{\theta}=1$ and thus $\widetilde{\omega}_b^{s,s}$ is also constant.
- The solution to $\dot{R}_b^S = \widetilde{\omega}_b^{S,S} R_b^S$ then becomes

$$R_b^s(t) = e^{\tilde{n}_b^{s,s}t} R_b^s(0) \qquad \qquad \tilde{n}_b^{s,s} \coloneqq S(\hat{n}_b^{s,s}) \in so(3)$$

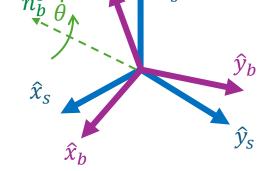
• Intuitively, this is the rotation matrix reached from $R_b^s(0)$ by rotating it around $\widehat{\omega}$ at a constant 1 rad/s for t seconds.



- Assume that $\omega_b^{s,s}=\hat{n}_b^{s,s}$ is a constant unit vector with $\dot{\theta}=1$ and thus $\widetilde{\omega}_b^{s,s}$ is also constant.
- The solution to $\dot{R}_b^s = \widetilde{\omega}_b^{s,s} R_b^s$ then becomes

$$R_b^S(t) = e^{\tilde{n}_b^{S,S}t} R_b^S(0) \qquad \qquad \tilde{n}_b^{S,S} = S(\hat{n}_b^{S,S}) \in so(3)$$

• Intuitively, this is the rotation matrix reached from $R_b^s(0)$ by rotating it around $\widehat{\omega}$ at a constant 1 rad/s for t seconds.

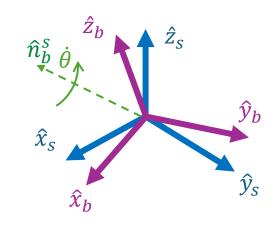


Note that since
$$\dot{\theta} = 1$$
, we have that $\theta(t) = \int_0^t \dot{\theta} \ dt = \int_0^t dt = t$

• By replacing t with θ , we have that

$$R_b^s(\theta) = e^{\tilde{n}_b^{s,s}\theta} R_b^s(0)$$

which is intuitively the rotation matrix achieved by rotating $R_b^s(0)$ around the axis $\hat{n}_b^{s,s}$ by an angle θ .



Exponential map of SO(3)

The exponential map

exp:
$$so(3) \rightarrow SO(3)$$

 $\tilde{n}_b^{s,s} \mapsto e^{\tilde{n}_b^{s,s}}$

maps elements of the Lie algebra to elements of the Lie group.

- It is surjective, but not injective
 - $\forall R \in SO(3)$, $\exists \tilde{n} \in SO(3)$ s.t. $R = e^{\tilde{n}}$
 - $\exists \hat{n}_1, \hat{n}_2 \in \mathbb{R}^3$ with $\hat{n}_1 \neq \hat{n}_2$ s.t. $e^{\tilde{n}_1} = e^{\tilde{n}_2}$

Exponential map of SO(3)

The exponential map

exp:
$$so(3) \rightarrow SO(3)$$

 $\tilde{n}_b^{s,s} \mapsto e^{\tilde{n}_b^{s,s}}$

maps elements of the Lie algebra to elements of the Lie group.

Given any pair $(\hat{n}, \theta) \in \mathbb{S}^2 \times [-\pi, \pi]$, the matrix exponential $e^{\tilde{n}\theta} \in SO(3)$ of $\tilde{n}\theta \in so(3)$, with $\tilde{n} \coloneqq S(\hat{n})$, is given by:

$$e^{\tilde{n}\theta} = I_3 + \sin\theta \, \tilde{n} + (1 - \cos\theta) \tilde{n}^2$$

Rodrigues's formula

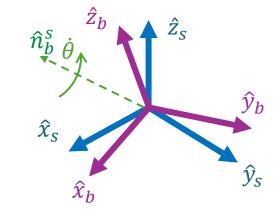
Elementary rotations

Rotations about the coordinate frame axes are given by:

$$\operatorname{Rot}(\hat{\mathbf{x}}, \theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix},$$

$$\operatorname{Rot}(\hat{\mathbf{y}}, \theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix},$$

$$\operatorname{Rot}(\hat{\mathbf{z}}, \theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}.$$



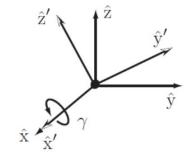
Roll-Pitch-Yaw Angles

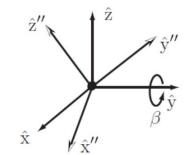
 The roll—pitch—yaw angles refer to the angles in a sequence of rotations about axes fixed in the space frame

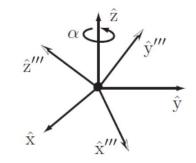
$$R(\alpha, \beta, \gamma) = \operatorname{Rot}(\hat{\mathbf{z}}, \alpha) \operatorname{Rot}(\hat{\mathbf{y}}, \beta) \operatorname{Rot}(\hat{\mathbf{x}}, \gamma) I$$

$$= \begin{bmatrix} \mathbf{c}_{\alpha} & -\mathbf{s}_{\alpha} & \mathbf{0} \\ \mathbf{s}_{\alpha} & \mathbf{c}_{\alpha} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{c}_{\beta} & \mathbf{0} & \mathbf{s}_{\beta} \\ \mathbf{0} & 1 & \mathbf{0} \\ -\mathbf{s}_{\beta} & \mathbf{0} & \mathbf{c}_{\beta} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{c}_{\gamma} & -\mathbf{s}_{\gamma} \\ \mathbf{0} & \mathbf{s}_{\gamma} & \mathbf{c}_{\gamma} \end{bmatrix} I$$

$$= \begin{bmatrix} \mathbf{c}_{\alpha} \mathbf{c}_{\beta} & \mathbf{c}_{\alpha} \mathbf{s}_{\beta} \mathbf{s}_{\gamma} - \mathbf{s}_{\alpha} \mathbf{c}_{\gamma} & \mathbf{c}_{\alpha} \mathbf{s}_{\beta} \mathbf{c}_{\gamma} + \mathbf{s}_{\alpha} \mathbf{s}_{\gamma} \\ \mathbf{s}_{\alpha} \mathbf{c}_{\beta} & \mathbf{s}_{\alpha} \mathbf{s}_{\beta} \mathbf{s}_{\gamma} + \mathbf{c}_{\alpha} \mathbf{c}_{\gamma} & \mathbf{s}_{\alpha} \mathbf{s}_{\beta} \mathbf{c}_{\gamma} - \mathbf{c}_{\alpha} \mathbf{s}_{\gamma} \\ -\mathbf{s}_{\beta} & \mathbf{c}_{\beta} \mathbf{s}_{\gamma} & \mathbf{c}_{\beta} \mathbf{c}_{\gamma} \end{bmatrix}.$$

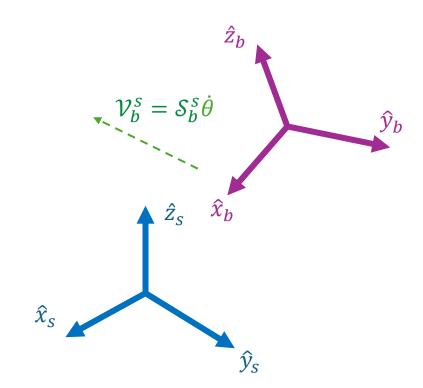






Screw interpretation of Twists

- Just as an angular velocity ω_b^s can be viewed as $\hat{n}_b^s \dot{\theta} \in \mathbb{R}^3$ where \hat{n}_b^s is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about it,
- A twist \mathcal{V}_b^s can interpreted in terms of a screw axis $\mathcal{S}_b^s \in \mathbb{R}^6$ and a velocity $\dot{\theta}$ about the screw axis



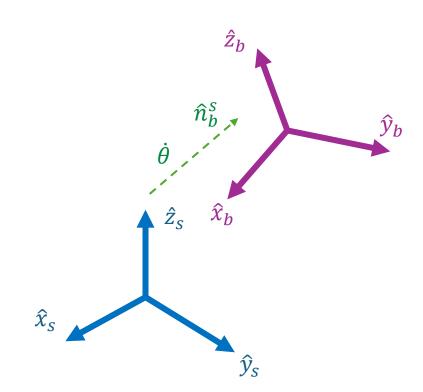
Screw interpretation of Twists

- We define the screw axis \mathcal{S}_b^s and $\dot{\theta}$ in the following manner:
 - a) Pure translation

$$\mathcal{S}_b^s = \begin{pmatrix} 0 \\ \hat{n}_b^s \end{pmatrix} \in \mathbb{R}^6,$$

 \hat{n}_{h}^{s} is the translation axis

 $\dot{\theta}$ is the linear velocity along the screw axis



Screw interpretation of Twists

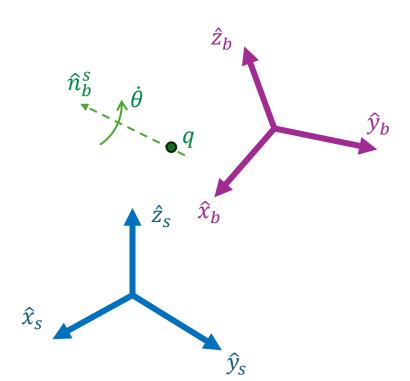
- We define the screw axis \mathcal{S}_{b}^{s} and $\dot{\theta}$ in the following manner:
 - b) Pure rotation

$$\mathcal{S}_b^s = \begin{pmatrix} \hat{n}_b^s \\ -\hat{n}_b^s \wedge q \end{pmatrix} \in \mathbb{R}^6,$$

 \hat{n}_{h}^{s} is the rotation axis

 $\dot{\theta}$ is the angular velocity around the screw axis

q is any point on the screw axis

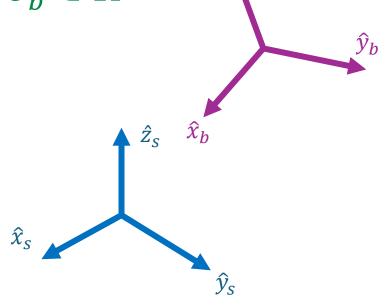


Exp. coordinates of homogeneous transformations

• By analogy to the exponential coordinates (\hat{n}_b^s, θ) for rotations, we can define the six-dimensional exponential coordinates of a homogeneous transformation H_b^s by $\mathcal{S}_b^s \theta \in \mathbb{R}^6$ such that

$$H_b^s(\theta) = e^{\tilde{S}_b^{s,s}\theta} H_b^s(0)$$

where $\tilde{\mathcal{S}}_b^{s,s} \in se(3)$ is the matrix representation of $\mathcal{S}_b^s \in \mathbb{R}^6$



Exponential map of SE(3)

The exponential map

exp:
$$se(3) \to SE(3)$$

 $\tilde{\mathcal{S}}_{b}^{S,S} \mapsto e^{\tilde{\mathcal{S}}_{b}^{S,S}}$

maps elements of the Lie algebra to elements of the Lie group.

• It is surjective, but not injective

Outline

- Motivation
- Exponential coordinates & Exponential map
- Product of Exponentials (PoE) formula
- Examples

