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Recap: Motivation

* An ideal joint (aka kinematic pair) is a purely kinematic relation
between two rigid bodies restricting the relative twist 1,

* The degrees of freedom (DoF) of a joint is the number of
independent coordinates of 1,"*.

Free motion (6 DoF) Revolute joint (1 DoF) Prismatic joint (1 DoF) Spherical joint (3 DoF)



Recap: Forward Kinematics

* The forward kinematics of a robot refers to the calculation of the
position and orientation of its end-effector frame from its joint
coordinates.
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Recap: Axis-angle representation of Angular velocity

* Angular velocity

. A*’. .

« Rotation matrix
R’ (6;) = e™ iR (0) € SO(3)

* Exponential map
exp:so(3) — SO(3)

. . ~],]

Rodrigues’s formula

e =L, +sin0 7 + (1 — cos )2




Recap: Screw representation of Twist

* Twist
V7 =5"6; € R

l
« Homogeneous transformation

HI(6)) = % "%tH! (0) € SE(3)

* Exponential map
exp:se(3) — SE(3)

R ~],]
Si],] > BSi Z2s Xp



Recap: Modeling Ideal Joints

e Joint twist
V.*’l_l — Si*'l_léi € ]R6

l
e Joint relations

im1i—1
S;

HI7'(6) =e %iHI71(0) € SE(3)

* Prismatic joints
. 0
. Si*,l—l — <A*,i—1) = R6,
n

i

- 717 Yis the translation axis

- 0 is the linear velocity along the screw axis




Recap: Modeling Ideal Joints

e Joint twist
vt =519, e R®
e Joint relations

H7'(6) =e
» Revolute joints

ﬁ*,i—l
. Si*,l—l — l = ]R6,
_ﬁ’lk,l—l /\ q*
l

- 7t 1is the rotation axis
- 0 is the angular velocity around the screw axis
* g IS any point on the screw axis

im1i—1
S;

%:H!"1(0) € SE(3)




Recap: Product of Exponentials Formula

* We can then compute the forward kinematics using the Product of
Exponentials (PoE) formula given by

=0,0 =0,1 =0n—1
HO(B) = e51 0152702 eSn” On [O(0)

Note that we can use the same formula to compute the
pose of the k-th link H2(8) not just the end effector !!




Exponential map of SE(3)

Proposition 3.25. Let S = (w,v) be a screw axis. If ||w|| = 1 then, for any
distance 0 € R traveled along the axus,

(S]6 el (19 + (1 — cos@)|w] 4+ (# — sin ())[w]‘Z) g

€ —

0

If w=0 and ||v|| =1, then

} . (3.88)

Note: [w] := @ € so(3) is the notation used in the book.
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Example 1
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Figure 4.3: A 3R spatial open chain.




Example 2
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Figure 4.4: PoE forward kinematics for the 6R open chain.



Example 3

Figure 4.5: The RRPRRR spatial open chain.
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Velocity Kinematics

"he forward kinematics defines a map from the joint angles 8 € Q to
the end effector pose Hy € SE(3).

The velocity kinematics Is the differential of this map which is a
mapping from 6 € TyQ to Hy, € T0SE(3).

... i Q is known as the joint space which is an n-dimensional manifold



Velocity Kinematics

* The forward kinematics defines a map from the joint angles 8 € Q to
the end effector pose Hy € SE(3).

* The velocity kinematics is the differential of this map which is a
mapping from 6 € TyQ to Hy, € T0SE(3).

» Representing the velocity kinematics as a map from 6 € T;Q = R®
to the end effector’s twist V,° € R® defines the geometric Jacobian

V0 = Jo(8)6 V0 = 1,(0)6

Spatial Jacobian Body Jacobian

% Q is known as the joint space which is an n-dimensional manifold J.(6) € R&>™



End effector spatial twist

- Recall that HY = HYH} ... HY™Y, (AB)"'=B~'4"1, (H}) " =H}
iy . d
Up® = HRHG = — (HYH3 .. HR ™) (HPH o ™)™

d
= a(Hszl ...HTTll_l)H;Z_1 ---H12H61




End effector spatial twist

- Recall that HO = HOH} .. HI"Y, (AB)~Y=B~1A"Y, (H¥) " =H!

i . d
Up® = HRHG = — (HYH3 .. HR ™) (HPH o ™)™
d
= —- (H{Hp .. Hi"D)Hy_y .. H{Hg
= HYH) . HPY'H! | . HZH} + H) HY ..H}YH!' | .. H? H} +

+HY HY . HYIH! | .. H? H}




End effector spatial twist

- Recall that HO = HOH} .. HI"Y, (AB)~Y=B~1A"Y, (H¥) " =H!

i . d
Up® = HRHG = — (HYH3 .. HR ™) (HPH o ™)™
d
= —- (H{Hp .. Hi"D)Hy_y .. H{Hg
= HYH) . HY'H! | . HfH} + H) HY ..H}'H!' | .. H? H} +

+HY HY . HYIH! | .. H? H}




End effector spatial twist

- Recall that HO = HOH} .. HI"Y, (AB)~Y=B~1A"Y, (H¥) " =H!

i . d
Up® = HRHG = — (HYH3 .. HR ™) (HPH o ™)™

d
= a(Hszl ...HTTll_l)H;Z_1 ---H12H61

= HY Hy + HPH;H{HG + -+ Hy_H 7 Hy  HE




End effector spatial twist

- Recall that HO = HOH} .. HI"Y, (AB)~Y=B~1A"Y, (H¥) " =H!

i . d
Up® = HRHG = — (HYH3 .. HR ™) (HPH o ™)™

d
= E(Hszl ...H,’}‘l)H,’{‘_l ---H12H61

= Hy Hy + HYHyH{Hg + -+ Hp_{H}} "' H}_ H ™




End effector spatial twist

- Recall that HY = HYH} ... HY™Y, (AB)"'=B~'4"1, (H}) " =H}
i . d
Up® = HRHG = — (HYH3 .. HR ™) (HPH o ™)™
d
= d—(Hsz HR~DHyp 4 ...H{Hg
=H} H} + HYHIH?HY + -+ HY_ HP-1H!  HP1
= V)P +HY V) HE + -+ HO_ U PR




End effector spatial twist

- Recall that HO = HOH} .. HI"Y, (AB)~Y=B~1A"Y, (H¥) " =H!
3 . d
V0 = gOHR = —(H{’Hzl CHEYD(HYHY CHPDT

d

T dt — (H{Hy . HR D Hy_; .. HiHy

= Hy Ho + HOHIHZHY + - + HO_ H-1HM  HO-1
— 100 + H{) ]71,1 H% 4 ..o+ H1(’)l 1]71;1—1,n—1H61_1

=V + V) + e+ D)




End effector spatial twist

- Recall that HY = HPH} ..H}=1, (AB)™'=B-14"%, (HX)" =H]
V)0 = AOHY = i(H{’HZ1 LHPYDY(HOHY L H )
j (HOH} .. HEDHD, .. HEH]
= HY Hy + HYH3HfHg + -+ Hp_H}"'HJ_ Hg ™!
= V> +HO U  HE + -+ HO_ Uit
=V + V) + e+ D)

Twists sum like scalars !!!

vl =20 + ) )
0,0 1,1 —-1n-1
— Vl + AdHi)(Q)VZ + .-+ Ang_l(g)V,? n




Spatial Jacobian

+ Recall that an ideal joint is defined by V"' = 74,

l

 Therefore,

Vo0 =V + Adyo gV, + + + Adyo_ V"

—_ 510’091 + AdH{)(Q)cS‘;’léz + + AdHTOl_l(e)cS‘;;l_ljn_lén




Spatial Jacobian

+ Recall that an ideal joint is defined by V"' = 74,

l

 Therefore,

Vo0 =V + Adyo gV, + + + Adyo_ V"

— Sf’ogl + AdH{)(Q)CS‘ZLlHZ + *ee + Ang_l(e)S;z_l,n_lén

=870, + $,)1(0)0, + -+ 5,1 (6)0,



Spatial Jacobian

+ Recall that an ideal joint is defined by V"' = 74,

l

 Therefore,

Vo0 =V + Adyo gV, + + + Adyo_ V"

— S](_)’Ogl + Ang(9)5;,162 + *ee + Ang_l(e)cS‘;f;l_l,n_lén

=870, + $)1(0)0, + -+ S, H(6)0,

(6:)
0, :]0(9)9

1 2nd n-th .
column column column Hn The Jacobian expressed in the
stationary frame or simply the
spatial Jacobian

= (870, 821©), . 8" )




Summary

* The forward kinematics of an n-link open chain manipulator is
expressed by

=0,0 =0,1 =0n—1
HO(B) = e51 0152702 eSn™ On [O(0)

» The spatial Jacobian J,(0) € R®*" relates the joint rates 8 € R™ to
the spatial end effector’s twist 1)° € R®.

* The k-th column of J,(0) is given by

S 1 (0) = Adyo (S




Summary

* The above approach is highly systematic and can be easily programmable.
» The only inputs needed are the initial poses H;(0) and constant screw axes

S~V for all links and joints.
« Note that we can compute S2° ' = Ad, 0 .S ! to be used in the PoE
k HO_ (0)Ok
formula.

 Since each column of J,(0) is a twist expressed in {0}, we can compute the
body Jacobian J,(6) simply by the Adjoint transformation Adyn ).

He© HY(0)

. Forward & Velocity
S -1,k-1

k Kinematics Jo(8) ) Jn(6)
. | Adyngy —
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Example 1
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Figure 5.7: Space Jacobian for a spatial RRRP chain.




Example 2
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Figure 5.8: Space Jacobian for the spatial RRPRRR chain.
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