SCE 594: Special Topics in Intelligent Automation & Robotics

Lecture 12: Velocity Kinematics

Outline

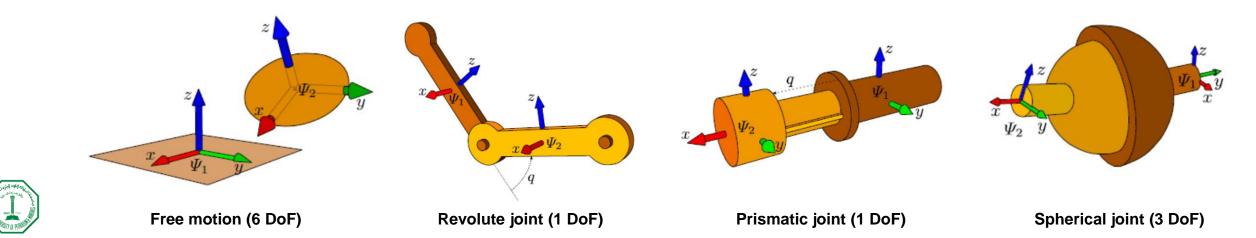
- Recap last lecture
- Examples
- Geometric Jacobian
- Examples

Outline

- Recap last lecture
- Examples
- Geometric Jacobian
- Examples

Recap: Motivation

- An ideal joint (aka kinematic pair) is a purely kinematic relation between two rigid bodies restricting the relative twist $\mathcal{V}_1^{*,2}$.
- The degrees of freedom (DoF) of a joint is the number of independent coordinates of $\mathcal{V}_1^{*,2}$.



Recap: Forward Kinematics

 The forward kinematics of a robot refers to the calculation of the position and orientation of its end-effector frame from its joint coordinates.

$$\theta \coloneqq (\theta_1, \theta_2, \dots, \theta_n) \mapsto H_n^0$$

Recap: Axis-angle representation of Angular velocity

Angular velocity

$$\omega_i^{*,j} = \hat{n}_i^{*,j} \dot{\theta}_i \in \mathbb{R}^3$$

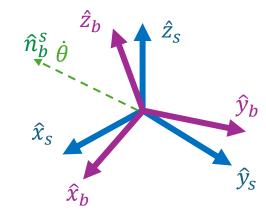
Rotation matrix

$$R_i^j(\theta_i) = e^{\tilde{n}_i^{j,j}\theta_i} R_i^j(0) \in SO(3)$$

Exponential map

exp:
$$so(3) \to SO(3)$$

 $\tilde{n}_i^{j,j} \mapsto e^{\tilde{n}_i^{j,j}}$



Rodrigues's formula

$$e^{\tilde{n}\theta} = I_3 + \sin\theta \, \tilde{n} + (1 - \cos\theta) \tilde{n}^2$$

Recap: Screw representation of Twist

Twist

$$\mathcal{V}_i^{*,j} = \mathcal{S}_i^{*,j} \dot{\theta}_i \in \mathbb{R}^6$$

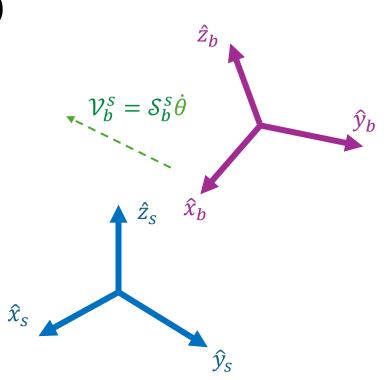
Homogeneous transformation

$$H_i^j(\theta_i) = e^{\tilde{\mathcal{S}}_i^{j,j}\theta_i} H_i^j(0) \in SE(3)$$

Exponential map

exp:
$$se(3) \to SE(3)$$

 $\tilde{S}_i^{j,j} \mapsto e^{\tilde{S}_i^{j,j}}$



Recap: Modeling Ideal Joints

Joint twist

$$\mathcal{V}_i^{*,i-1} = \mathcal{S}_i^{*,i-1}\dot{\theta}_i \in \mathbb{R}^6$$

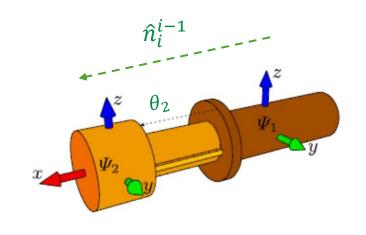
Joint relations

$$H_i^{i-1}(\theta_i) = e^{\tilde{S}_i^{i-1,i-1}\theta_i} H_i^{i-1}(0) \in SE(3)$$

Prismatic joints

•
$$S_i^{*,i-1} = \begin{pmatrix} 0 \\ \widehat{n}_i^{*,i-1} \end{pmatrix} \in \mathbb{R}^6$$
,

- $\hat{n}_i^{*,i-1}$ is the translation axis
- $\dot{\theta}$ is the linear velocity along the screw axis



Recap: Modeling Ideal Joints

Joint twist

$$\mathcal{V}_i^{*,i-1} = \mathcal{S}_i^{*,i-1}\dot{\theta}_i \in \mathbb{R}^6$$

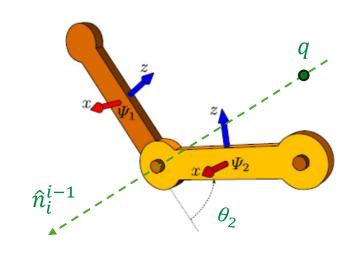
Joint relations

$$H_i^{i-1}(\theta_i) = e^{\tilde{S}_i^{i-1,i-1}\theta_i} H_i^{i-1}(0) \in SE(3)$$

Revolute joints

$$\bullet \ \mathcal{S}_i^{*,i-1} = \begin{pmatrix} \widehat{n}_i^{*,i-1} \\ -\widehat{n}_i^{*,i-1} \wedge q^* \end{pmatrix} \in \mathbb{R}^6,$$

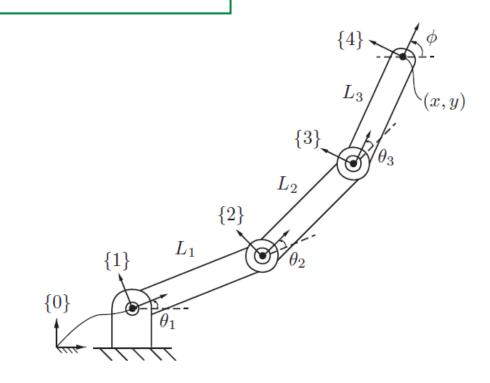
- \hat{n}_i^{i-1} is the rotation axis
- $\dot{\theta}$ is the angular velocity around the screw axis
- q is any point on the screw axis



Recap: Product of Exponentials Formula

 We can then compute the forward kinematics using the Product of Exponentials (PoE) formula given by

$$H_n^0(\theta) = e^{\tilde{S}_1^{0,0}\theta_1} e^{\tilde{S}_2^{0,1}\theta_2} \dots e^{\tilde{S}_n^{0,n-1}\theta_n} H_n^0(0)$$



Note that we can use the same formula to compute the pose of the k-th link $H_k^0(\theta)$ not just the end effector !!

Exponential map of SE(3)

Proposition 3.25. Let $S = (\omega, v)$ be a screw axis. If $\|\omega\| = 1$ then, for any distance $\theta \in \mathbb{R}$ traveled along the axis,

$$e^{[S]\theta} = \begin{bmatrix} e^{[\omega]\theta} & (I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2) v \\ 0 & 1 \end{bmatrix}.$$
 (3.88)

If $\omega = 0$ and ||v|| = 1, then

$$e^{[\mathcal{S}]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}. \tag{3.89}$$

Note: $[\omega] := \widetilde{\omega} \in so(3)$ is the notation used in the book.

Outline

- Recap last lecture
- Examples
- Geometric Jacobian
- Examples

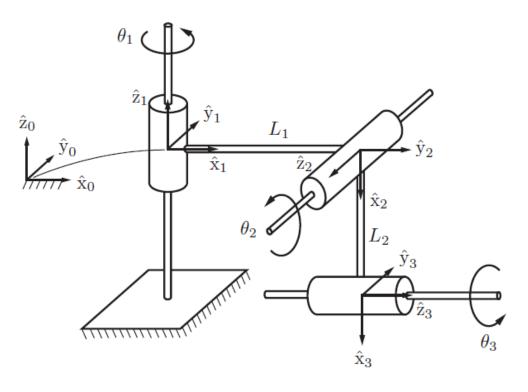


Figure 4.3: A 3R spatial open chain.

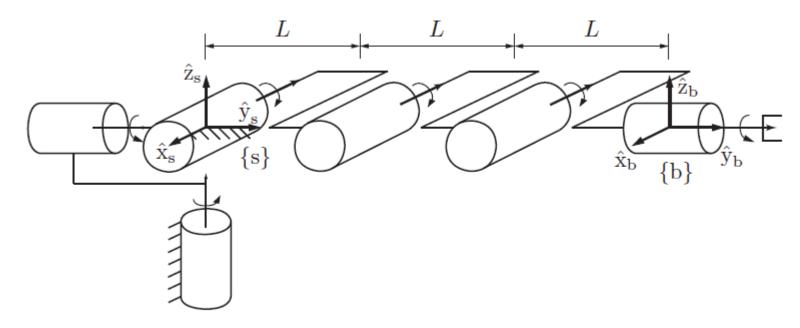


Figure 4.4: PoE forward kinematics for the 6R open chain.

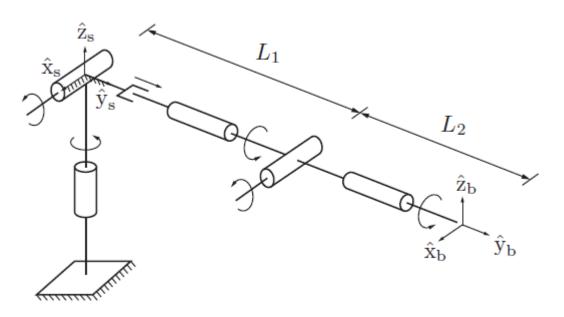


Figure 4.5: The RRPRRR spatial open chain.

Outline

- Recap last lecture
- Examples
- Geometric Jacobian
- Examples

Velocity Kinematics

- The forward kinematics defines a map from the joint angles $\theta \in Q$ to the end effector pose $H_n^0 \in SE(3)$.
- The velocity kinematics is the differential of this map which is a mapping from $\dot{\theta} \in T_{\theta}Q$ to $\dot{H}_{n}^{0} \in T_{H_{n}^{0}}SE(3)$.

Velocity Kinematics

- The forward kinematics defines a map from the joint angles $\theta \in Q$ to the end effector pose $H_n^0 \in SE(3)$.
- The velocity kinematics is the differential of this map which is a mapping from $\dot{\theta} \in T_{\theta}Q$ to $\dot{H}_{n}^{0} \in T_{H_{n}^{0}}SE(3)$.
- Representing the velocity kinematics as a map from $\dot{\theta} \in T_{\theta}Q \cong \mathbb{R}^6$ to the end effector's twist $\mathcal{V}_n^{*,0} \in \mathbb{R}^6$ defines the geometric Jacobian

$$\mathcal{V}_n^{0,0} = J_0(\theta)\dot{\theta}$$

Spatial Jacobian

$$\mathcal{V}_n^{n,0} = J_n(\theta)\dot{\theta}$$

Body Jacobian

• Recall that $H_n^0 = H_1^0 H_2^1 \dots H_n^{n-1}$, $(AB)^{-1} = B^{-1}A^{-1}$, $(H_i^k)^{-1} = H_k^i$ $\tilde{\mathcal{V}}_n^{0,0} \coloneqq \dot{H}_n^0 H_0^n = \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) (H_1^0 H_2^1 \dots H_n^{n-1})^{-1}$ $= \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) H_{n-1}^n \dots H_1^2 H_0^1$

• Recall that $H_n^0 = H_1^0 H_2^1 \dots H_n^{n-1}$, $(AB)^{-1} = B^{-1}A^{-1}$, $(H_i^k)^{-1} = H_k^i$ $\tilde{\mathcal{V}}_n^{0,0} \coloneqq \dot{H}_n^0 H_0^n = \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) (H_1^0 H_2^1 \dots H_n^{n-1})^{-1}$ $= \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) H_{n-1}^n \dots H_1^2 H_0^1$ $= \dot{H}_1^0 H_2^1 \dots H_n^{n-1} H_{n-1}^n \dots H_1^2 H_0^1 + H_1^0 \dot{H}_2^1 \dots H_n^{n-1} H_{n-1}^n \dots H_1^2 H_0^1 + \cdots$ $+ H_1^0 H_2^1 \dots \dot{H}_n^{n-1} H_{n-1}^n \dots H_1^2 H_0^1$

• Recall that $H_{n}^{0} = H_{1}^{0}H_{2}^{1} \dots H_{n}^{n-1}$, $(AB)^{-1} = B^{-1}A^{-1}$, $(H_{i}^{k})^{-1} = H_{k}^{i}$ $\tilde{\mathcal{V}}_{n}^{0,0} \coloneqq \dot{H}_{n}^{0}H_{0}^{n} = \frac{d}{dt}(H_{1}^{0}H_{2}^{1} \dots H_{n}^{n-1})(H_{1}^{0}H_{2}^{1} \dots H_{n}^{n-1})^{-1}$ $= \frac{d}{dt}(H_{1}^{0}H_{2}^{1} \dots H_{n}^{n-1})H_{n-1}^{n} \dots H_{1}^{2}H_{0}^{1}$ $= \dot{H}_{1}^{0}H_{2}^{1} \dots H_{n}^{n-1}H_{n-1}^{n} \dots H_{1}^{2}H_{0}^{1} + H_{1}^{0} \dot{H}_{2}^{1} \dots H_{n}^{n-1}H_{n-1}^{n} \dots H_{1}^{2} H_{0}^{1} + \dots$ $+ H_{1}^{0} H_{2}^{1} \dots \dot{H}_{n}^{n-1}H_{n-1}^{n} \dots H_{1}^{2} H_{0}^{1}$

• Recall that $H_n^0 = H_1^0 H_2^1 \dots H_n^{n-1}$, $(AB)^{-1} = B^{-1}A^{-1}$, $(H_i^k)^{-1} = H_k^i$ $\tilde{\mathcal{V}}_n^{0,0} \coloneqq \dot{H}_n^0 H_0^n = \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) (H_1^0 H_2^1 \dots H_n^{n-1})^{-1}$ $= \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) H_{n-1}^n \dots H_1^2 H_0^1$ $= \dot{H}_1^0 H_0^1 + H_1^0 \dot{H}_2^1 H_1^2 H_0^1 + \dots + H_{n-1}^0 \dot{H}_n^{n-1} H_{n-1}^n H_0^{n-1}$

• Recall that $H_n^0 = H_1^0 H_2^1 \dots H_n^{n-1}$, $(AB)^{-1} = B^{-1}A^{-1}$, $(H_i^k)^{-1} = H_k^i$ $\tilde{\mathcal{V}}_n^{0,0} \coloneqq \dot{H}_n^0 H_0^n = \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) (H_1^0 H_2^1 \dots H_n^{n-1})^{-1}$ $= \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) H_{n-1}^n \dots H_1^2 H_0^1$ $= \dot{H}_1^0 H_0^1 + H_1^0 \dot{H}_2^1 H_1^2 H_0^1 + \dots + H_{n-1}^0 \dot{H}_n^{n-1} H_{n-1}^n H_0^{n-1}$

• Recall that $H_{n}^{0} = H_{1}^{0}H_{2}^{1} \dots H_{n}^{n-1}$, $(AB)^{-1} = B^{-1}A^{-1}$, $(H_{i}^{k})^{-1} = H_{k}^{i}$ $\tilde{\mathcal{V}}_{n}^{0,0} \coloneqq \dot{H}_{n}^{0}H_{0}^{n} = \frac{d}{dt}(H_{1}^{0}H_{2}^{1} \dots H_{n}^{n-1})(H_{1}^{0}H_{2}^{1} \dots H_{n}^{n-1})^{-1}$ $= \frac{d}{dt}(H_{1}^{0}H_{2}^{1} \dots H_{n}^{n-1})H_{n-1}^{n} \dots H_{1}^{2}H_{0}^{1}$ $= \dot{H}_{1}^{0}H_{0}^{1} + H_{1}^{0}\dot{H}_{2}^{1}H_{1}^{2}H_{0}^{1} + \dots + H_{n-1}^{0}\dot{H}_{n}^{n-1}H_{n-1}^{n}H_{0}^{n-1}$ $= \tilde{\mathcal{V}}_{1}^{0,0} + H_{1}^{0}\tilde{\mathcal{V}}_{2}^{1,1}H_{0}^{1} + \dots + H_{n-1}^{0}\tilde{\mathcal{V}}_{n}^{n-1,n-1}H_{0}^{n-1}$

• Recall that $H_n^0 = H_1^0 H_2^1 \dots H_n^{n-1}$, $(AB)^{-1} = B^{-1}A^{-1}$, $(H_i^k)^{-1} = H_k^i$ $\tilde{\mathcal{V}}_n^{0,0} \coloneqq \dot{H}_n^0 H_0^n = \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) (H_1^0 H_2^1 \dots H_n^{n-1})^{-1}$ $= \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) H_{n-1}^n \dots H_1^2 H_0^1$ $= \dot{H}_1^0 H_0^1 + H_1^0 \dot{H}_2^1 H_1^2 H_0^1 + \dots + H_{n-1}^0 \dot{H}_n^{n-1} H_{n-1}^n H_0^{n-1}$ $= \tilde{\mathcal{V}}_1^{0,0} + H_1^0 \tilde{\mathcal{V}}_2^{1,1} H_0^1 + \dots + H_{n-1}^0 \tilde{\mathcal{V}}_n^{n-1,n-1} H_0^{n-1}$ $= \tilde{\mathcal{V}}_1^{0,0} + \tilde{\mathcal{V}}_2^{0,1} + \dots + \tilde{\mathcal{V}}_n^{0,n-1}$

• Recall that
$$H_n^0 = H_1^0 H_2^1 \dots H_n^{n-1}$$
, $(AB)^{-1} = B^{-1}A^{-1}$, $(H_i^k)^{-1} = H_k^i$

$$\tilde{\mathcal{V}}_n^{0,0} \coloneqq \dot{H}_n^0 H_0^n = \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) (H_1^0 H_2^1 \dots H_n^{n-1})^{-1}$$

$$= \frac{d}{dt} (H_1^0 H_2^1 \dots H_n^{n-1}) H_{n-1}^n \dots H_1^2 H_0^1$$

$$= \dot{H}_1^0 H_0^1 + H_1^0 \dot{H}_2^1 H_1^2 H_0^1 + \dots + H_{n-1}^0 \dot{H}_n^{n-1} H_{n-1}^n H_0^{n-1}$$

$$= \tilde{\mathcal{V}}_1^{0,0} + H_1^0 \tilde{\mathcal{V}}_2^{1,1} H_0^1 + \dots + H_{n-1}^0 \tilde{\mathcal{V}}_n^{n-1,n-1} H_0^{n-1}$$

$$= \tilde{\mathcal{V}}_1^{0,0} + \tilde{\mathcal{V}}_2^{0,1} + \dots + \tilde{\mathcal{V}}_n^{0,n-1}$$

Twists sum like scalars !!!

$$\begin{aligned} \mathcal{V}_{n}^{0,0} &= \mathcal{V}_{1}^{0,0} + \mathcal{V}_{2}^{0,1} + \dots + \mathcal{V}_{n}^{0,n-1} \\ &= \mathcal{V}_{1}^{0,0} + Ad_{H_{1}^{0}(\theta)} \mathcal{V}_{2}^{1,1} + \dots + Ad_{H_{n-1}^{0}(\theta)} \mathcal{V}_{n}^{n-1,n-1} \end{aligned}$$

Spatial Jacobian

- Recall that an ideal joint is defined by $\mathcal{V}_i^{*,i-1} = \mathcal{S}_i^{*,i-1}\dot{\theta}_i$
- Therefore,

$$\mathcal{V}_{n}^{0,0} = \mathcal{V}_{1}^{0,0} + Ad_{H_{1}^{0}(\theta)}\mathcal{V}_{2}^{1,1} + \dots + Ad_{H_{n-1}^{0}(\theta)}\mathcal{V}_{n}^{n-1,n-1}$$

$$= \mathcal{S}_{1}^{0,0}\dot{\theta}_{1} + Ad_{H_{1}^{0}(\theta)}\mathcal{S}_{2}^{1,1}\dot{\theta}_{2} + \dots + Ad_{H_{n-1}^{0}(\theta)}\mathcal{S}_{n}^{n-1,n-1}\dot{\theta}_{n}$$

Spatial Jacobian

- Recall that an ideal joint is defined by $\mathcal{V}_i^{*,i-1} = \mathcal{S}_i^{*,i-1}\dot{\theta}_i$
- Therefore,

$$\begin{split} \mathcal{V}_{n}^{0,0} &= \mathcal{V}_{1}^{0,0} + Ad_{H_{1}^{0}(\theta)} \mathcal{V}_{2}^{1,1} + \dots + Ad_{H_{n-1}^{0}(\theta)} \mathcal{V}_{n}^{n-1,n-1} \\ &= \mathcal{S}_{1}^{0,0} \dot{\theta}_{1} + Ad_{H_{1}^{0}(\theta)} \mathcal{S}_{2}^{1,1} \dot{\theta}_{2} + \dots + Ad_{H_{n-1}^{0}(\theta)} \mathcal{S}_{n}^{n-1,n-1} \dot{\theta}_{n} \\ &= \mathcal{S}_{1}^{0,0} \dot{\theta}_{1} + \mathcal{S}_{2}^{0,1}(\theta) \dot{\theta}_{2} + \dots + \mathcal{S}_{n}^{0,n-1}(\theta) \dot{\theta}_{n} \end{split}$$

Spatial Jacobian

- Recall that an ideal joint is defined by $\mathcal{V}_i^{*,i-1} = \mathcal{S}_i^{*,i-1}\dot{\theta}_i$
- Therefore,

$$\begin{split} \mathcal{V}_{n}^{0,0} &= \mathcal{V}_{1}^{0,0} + Ad_{H_{1}^{0}(\theta)} \mathcal{V}_{2}^{1,1} + \dots + Ad_{H_{n-1}^{0}(\theta)} \mathcal{V}_{n}^{n-1,n-1} \\ &= \mathcal{S}_{1}^{0,0} \dot{\theta}_{1} + Ad_{H_{1}^{0}(\theta)} \mathcal{S}_{2}^{1,1} \dot{\theta}_{2} + \dots + Ad_{H_{n-1}^{0}(\theta)} \mathcal{S}_{n}^{n-1,n-1} \dot{\theta}_{n} \\ &= \mathcal{S}_{1}^{0,0} \dot{\theta}_{1} + \mathcal{S}_{2}^{0,1}(\theta) \dot{\theta}_{2} + \dots + \mathcal{S}_{n}^{0,n-1}(\theta) \dot{\theta}_{n} \\ &= \left(\mathcal{S}_{1}^{0,0} \ , \ \mathcal{S}_{2}^{0,1}(\theta) \ , \dots \ , \mathcal{S}_{n}^{0,n-1}(\theta) \right) \begin{pmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \vdots \\ \dot{\theta}_{n} \end{pmatrix} = J_{0}(\theta) \dot{\theta} \end{split}$$

The Jacobian expressed in the stationary frame or simply the spatial Jacobian

Summary

 The forward kinematics of an n-link open chain manipulator is expressed by

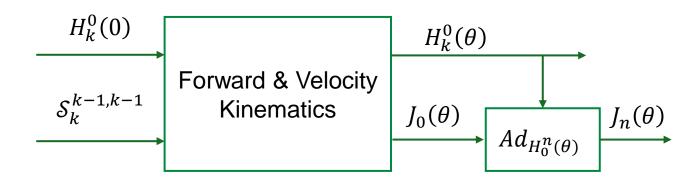
$$H_n^0(\theta) = e^{\tilde{S}_1^{0,0}\theta_1} e^{\tilde{S}_2^{0,1}\theta_2} \dots e^{\tilde{S}_n^{0,n-1}\theta_n} H_n^0(0)$$

- The spatial Jacobian $J_0(\theta) \in \mathbb{R}^{6 \times n}$ relates the joint rates $\dot{\theta} \in \mathbb{R}^n$ to the spatial end effector's twist $\mathcal{V}_n^{0,0} \in \mathbb{R}^6$.
- The k-th column of $J_0(\theta)$ is given by

$$S_k^{0,k-1}(\theta) = Ad_{H_{k-1}^0(\theta)} S_k^{k-1,k-1}$$

Summary

- The above approach is highly systematic and can be easily programmable.
- The only inputs needed are the initial poses $H_k^0(0)$ and constant screw axes $\mathcal{S}_k^{k-1,k-1}$ for all links and joints.
- Note that we can compute $S_k^{0,k-1}=\mathrm{Ad}_{H_{k-1}^0(0)}S_k^{k-1,k-1}$ to be used in the PoE formula.
- Since each column of $J_0(\theta)$ is a twist expressed in $\{0\}$, we can compute the body Jacobian $J_n(\theta)$ simply by the Adjoint transformation $Ad_{H_0^n(\theta)}$.



Outline

- Recap last lecture
- Examples
- Geometric Jacobian
- Examples

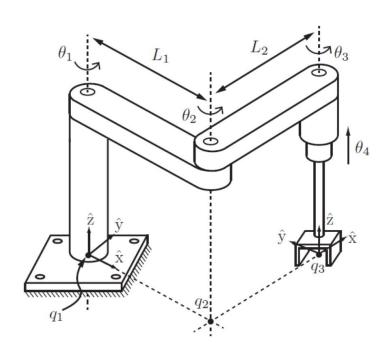


Figure 5.7: Space Jacobian for a spatial RRRP chain.

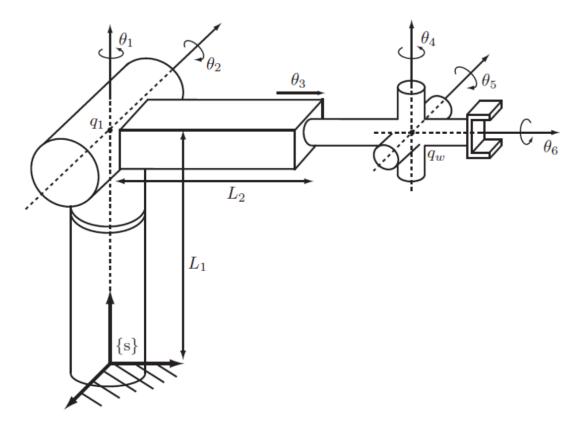


Figure 5.8: Space Jacobian for the spatial RRPRRR chain.