SCE 594: Special Topics in Intelligent Automation & Robotics

Lecture 17: Fundamentals of Lyapunov theory

Outline

- Recap last lecture
- Equilibrium points and Stability notions
- Case study: Pendulum
- Lyapunov's indirect method

Outline

- Recap last lecture
- Equilibrium points and Stability notions
- Case study: Pendulum
- Lyapunov's indirect method

Recap: State Space Model

 A nonlinear dynamic system can be represented by a set of nonlinear differential equations in the form

$$\dot{x} = f(x) + g(x) u$$
$$y = h(x)$$

which is called the state space model of the dynamic system.

- We denote by the
 - State space $X \ni x$
 - Control space $U \ni u$
 - Output space $y \ni y$

Special case: Linear time-invariant systems

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

Recap: Control Objectives

- The control input is designed in general as a function of the output $u = \beta(y)$ to achieve:
 - Regulation/Stabilization

 $x(t) \rightarrow x_d$ as $t \rightarrow \infty$ $x(t) \rightarrow x_d(t), \dot{x}(t) \rightarrow \dot{x}_d(t)$ as $t \rightarrow \infty$

- Tracking
- Interaction
- The closed loop system is given by

$$\dot{x} = f_{\rm cl}(x)$$

where $f_{\rm cl}(x) \coloneqq f(x) + g(x) \cdot \beta(h(x))$

The design of the control system is based on analyzing the stability of the closed-loop system!

Recap: State Space Models – Mechanical Systems

System	State x	State Space X
Mass-Spring-Damper	$(\xi,\dot{\xi})$	$\mathbb{R} \times \mathbb{R} \cong T\mathbb{R}$
Simple pendulum	$\left(heta,\dot{ heta} ight)$	$(-\pi,\pi]\times\mathbb{R}\cong T\mathbb{S}$
n-link Manipulator	$\left(heta,\dot{ heta} ight)$	TQ
Satellite	(R,ω)	$SO(3) \times \mathbb{R}^3 \cong TSO(3)$
Multirotor Aerial Vehicle	(H, \mathcal{V})	$SE(3) \times \mathbb{R}^6 \cong TSE(3)$

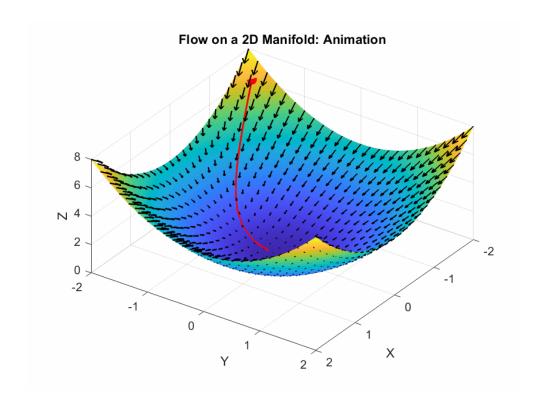
For mechanical systems in general, $x=(q,\dot{q})\in TQ$, where $q\in Q$ represents a configuration variable of the mechanical system and $\dot{q}\in T_qQ$ denotes a velocity-like variable.

Outline

- Recap last lecture
- Equilibrium points and Stability notions
- Case study: Pendulum
- Lyapunov's indirect method

Geometric Nature of $\dot{x}(t) = f(x(t))$

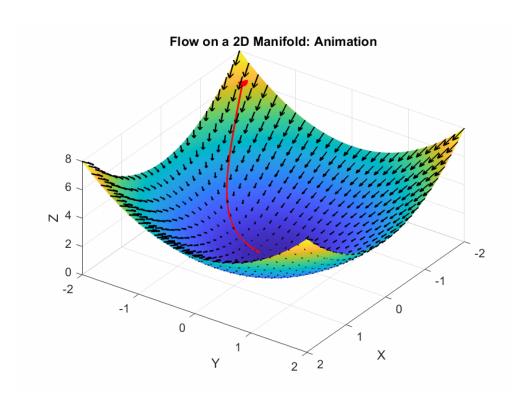
- Euclidean case $\mathcal{X} = \mathbb{R}^n$:
 - $x_t \in \mathbb{R}^n$
 - $\dot{x}_t \in \mathbb{R}^n$
 - $f: \mathbb{R}^n \to \mathbb{R}^n$
- Non-Euclidean case:
 - $x_t \in \mathcal{X}$
 - $\dot{x}_t \in T_x \mathcal{X}$
 - $f: x_t \in \mathcal{X} \mapsto \dot{x}_t \in T_x \mathcal{X}$



The map f creates a vector field $\sigma_f \in \Gamma(T\mathcal{X})$ on the state space manifold $\sigma_f \colon \mathcal{X} \to T\mathcal{X}$ defined by: $\sigma_f(x) \coloneqq (x, f(x)) \in T\mathcal{X}$, with $f(x) \in T_x\mathcal{X}$

Geometric Nature of $\dot{x}(t) = f(x(t))$

- Euclidean case $\mathcal{X} = \mathbb{R}^n$:
 - $x_t \in \mathbb{R}^n$
 - $\dot{x}_t \in \mathbb{R}^n$
 - $f: \mathbb{R}^n \to \mathbb{R}^n$
- Non-Euclidean case:
 - $x_t \in \mathcal{X}$
 - $\dot{x}_t \in T_x \mathcal{X}$
 - $f: x_t \in \mathcal{X} \mapsto \dot{x}_t \in T_x \mathcal{X}$



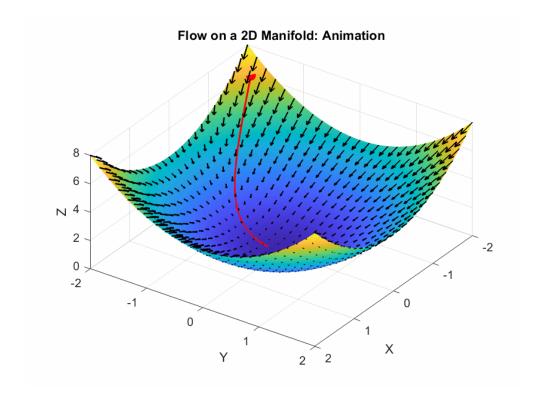
The solution of the dynamical system x(t) is given by the integral curves of σ_f .

Integral Curves

While f(x) represents the velocity of a particle at every point, the integral curve represents the trajectory of a particle moving along this velocity field.

Geometric Nature of $\dot{x}(t) = f(x(t))$

- Euclidean case $\mathcal{X} = \mathbb{R}^n$:
 - $x_t \in \mathbb{R}^n$
 - $\dot{x}_t \in \mathbb{R}^n$
 - $f: \mathbb{R}^n \to \mathbb{R}^n$
- Non-Euclidean case:
 - $x_t \in \mathcal{X}$
 - $\dot{x}_t \in T_x \mathcal{X}$
 - $f: x_t \in \mathcal{X} \mapsto \dot{x}_t \in T_x \mathcal{X}$



Stability analysis

By analyzing properties of f or σ_f , we can infer how the system's state x(t) will evolve with time, without explicitly computing the solution as a function of time.

Equilibrium Points

• Given $\sigma_f \in \Gamma(TX)$, a point $x_* \in X$ in the state space is called an equilibrium point for σ_f if and only if

$$f(x_*)=0$$

• Intuitively, an equilibrium point is a state x_* at which the system state remains for all time, once it reaches it.

• Equilibrium points are also referred to as "fixed points" or "critical points" of the system $\dot{x}(t) = f(x(t))$.

Stability of Equilibrium Points

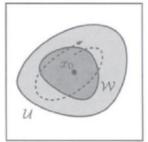
- An equilibrium point x_* of σ_f is said to be:
 - Stable
 - Unstable
 - Locally asymptotically stable
 - Globally asymptotically stable

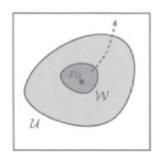
If integral curves of σ_f stay "close" to x_*

If it is not stable

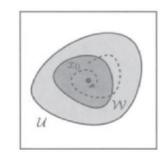
If it is stable and integral curves of σ_f converge to x_* only within a region $U \subset \mathcal{X}$

If it is stable and integral curves of σ_f converge to x_* for all $x \in \mathcal{X}$





Unstable x_0

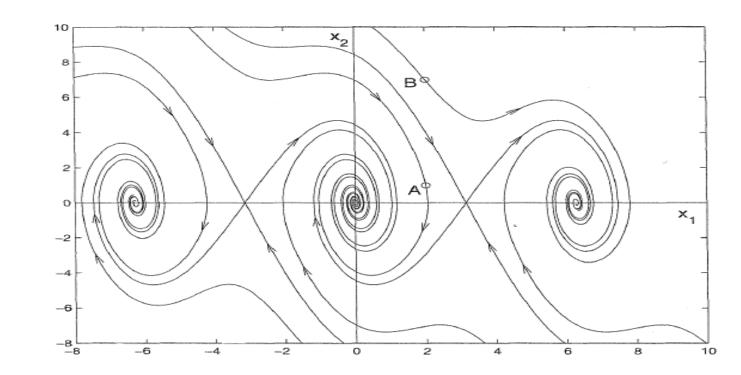


He was a second

Locally asym. stable x_0

Phase Portrait

- A phase portrait is a visual representation of the trajectories of a dynamical system in phase space.
- It helps illustrate the behavior of integral curves and the stability of equilibrium points.



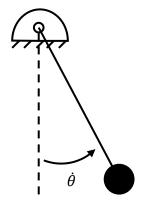
Outline

- Recap last lecture
- Equilibrium points and Stability notions
- Case study: Pendulum
- Lyapunov's indirect method

Consider the state-space model of the pendulum given by

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -\frac{b}{mL^2} x_2 - \frac{g}{L} \sin x_1 \end{pmatrix} =: f(x)$$

where $x_1 = \theta$, $x_2 = \dot{\theta}$.



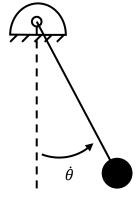
Consider the state-space model of the pendulum given by

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -\frac{b}{mL^2} x_2 - \frac{g}{L} \sin x_1 \end{pmatrix} =: f(x)$$

where $x_1 = \theta$, $x_2 = \dot{\theta}$.

• To find the equilibrium points x_* , we set f(x) = 0:

$$x_2 = 0$$
 , $-\frac{b}{mL^2}x_2 - \frac{g}{L}\sin x_1 = 0$,

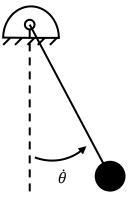


Consider the state-space model of the pendulum given by

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -\frac{b}{mL^2} x_2 - \frac{g}{L} \sin x_1 \end{pmatrix} =: f(x)$$

where $x_1 = \theta$, $x_2 = \dot{\theta}$.

- To find the equilibrium points x_* , we set f(x) = 0, which simplifies to $x_2 = 0$, $\sin x_1 = 0$
 - Solving for $x_1 \in \mathbb{R}$, we get: $\sin x_1 = 0 \quad \Rightarrow \quad x_1 = k\pi, \qquad k \in \mathbb{Z}$



Consider the state-space model of the pendulum given by

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -\frac{b}{mL^2} x_2 - \frac{g}{L} \sin x_1 \end{pmatrix} =: f(x)$$

where $x_1 = \theta$, $x_2 = \dot{\theta}$.

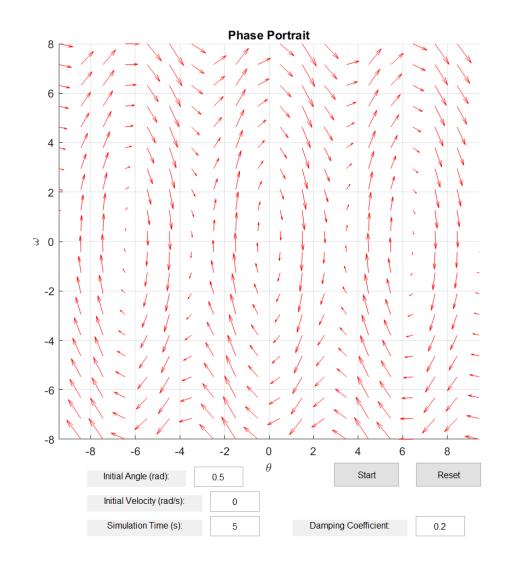
- To find the equilibrium points x_* , we set f(x) = 0, which simplifies to $x_2 = 0$, $\sin x_1 = 0$
 - Solving for $x_1 \in \mathbb{R}$, we get: $\sin x_1 = 0 \implies x_1 = k\pi$, $k \in \mathbb{Z}$
 - However, recall that $x_1 = \theta \in (-\pi, \pi] \cong \mathbb{S}^1$, thus the system has only two equilibrium points

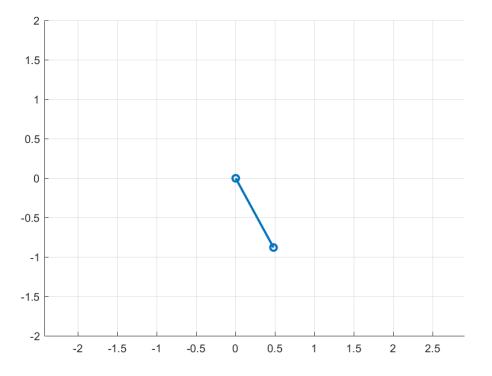
$$x_* = (0,0)$$

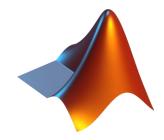
$$x_* = (\pi, 0)$$

Upward position

MATLAB Code



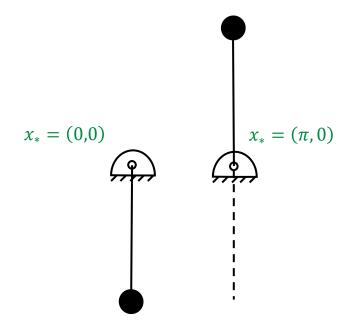




In summary, the state space model

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -\frac{b}{mL^2} x_2 - \frac{g}{L} \sin x_1 \end{pmatrix}$$

has an asymptotically stable equilibrium at $x_* = (0,0)$ and an unstable equilibrium at $x_* = (\pi, 0)$.



Outline

- Recap last lecture
- Equilibrium points and Stability notions
- Case study: Pendulum
- Lyapunov's indirect method

Phase Portrait Limitation

- A phase portrait has several useful properties:
 - It allows us to visualize what goes on in a nonlinear system starting from various initial conditions, without having to solve the nonlinear equations analytically.
 - It is not restricted to small or smooth nonlinearities, but applies equally well to strong nonlinearities.
- However, its main disadvantage is:
 - It is only restricted to 2nd order dynamical systems (which correspond to 1st order mechanical systems!)

Lyapunov stability

- The most useful and general approach for studying the stability of nonlinear dynamical systems is the theory introduced in the late 19th century by the Russian mathematician Lyapunov.
- His work introduced two methods:
 - Indirect Method: studies nonlinear local stability around an equilibrium point x_* from stability properties of its linear approximation.
 - <u>Direct Method:</u> not restricted to local motion. Stability of nonlinear system is studied by proposing a scalar "energy-like" function $V: \mathcal{X} \to \mathbb{R}$ for the system and examining its time variation

Aleksandr Mikhailovich Lyapunov (1857-1918) was a Russian mathematician, mechanic and physicist. https://en.wikipedia.org/wiki/Aleksandr Lyapunov

Recall: Taylor series expansion

• Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$, the **Taylor series expansion** of order k around a point $x_0 \in \mathbb{R}^n$ expresses f(x) as a sum of k derivatives evaluated at x_0 .

• Case k = 1:

$$f(x) \approx f(x_0) + df(x_0)(x - x_0),$$

where
$$df \coloneqq \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right)$$
 is a "covector field"
$$df \colon \mathbb{R}^n \to (\mathbb{R}^n)^*$$

defined such that
$$df(x) = \left(\frac{\partial f}{\partial x_1}(x), \cdots, \frac{\partial f}{\partial x_n}(x)\right) \in (\mathbb{R}^n)^*$$
 is a covector.

Recall: Taylor series expansion

• Now suppose $f: \mathbb{R}^n \to \mathbb{R}^n$, the **Taylor series expansion** of order 1 around a point $x_0 \in \mathbb{R}^n$ is given by

$$f(x) \approx f(x_0) + J_f(x_0)(x - x_0),$$

where $J_f(x_0) \in \mathbb{R}^{n \times n}$ is the Jacobian matrix given by

$$J_f(x) = \begin{pmatrix} df_1(x) \\ \vdots \\ df_n(x) \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \cdots & \frac{\partial f_n}{\partial x_n}(x) \end{pmatrix}$$

Lyapunov's indirect method

• Consider the nonlinear system $\dot{x} = f(x)$ with equilibrium point x_* . The linearization of this system around the equilibrium point x_* is given by:

$$\dot{z} = A z$$

where $z \coloneqq x - x_* \in \mathbb{R}^n$, $A \coloneqq J_f(x_*)$.

Lyapunov's indirect method

• Consider the nonlinear system $\dot{x} = f(x)$ with equilibrium point x_* . The linearization of this system around the equilibrium point x_* is given by:

$$\dot{z} = A z$$

where
$$z \coloneqq x - x_* \in \mathbb{R}^n$$
, $A \coloneqq J_f(x_*)$.

Stability Conditions

- Asymptotic Stability: If all eigenvalues of A have negative real parts, then x_* is locally asymptotically stable for the nonlinear system.
- Instability: If at least one eigenvalue of A has a **positive real part**, then x_* is **unstable** for the nonlinear system.
- **Inconclusive Case**: If some eigenvalues of *A* have **zero real parts**, Lyapunov's Indirect Method does not provide a definite answer, and higher-order nonlinear terms must be considered.

