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 Equilibrium points and Stability notions
« Case study: Pendulum

* Lyapunov’s indirect method
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Recap: State Space Model

* A nonlinear dynamic system can be represented by a set of
nonlinear differential equations in the form

x=f(x)+gx)u
y = h(x)
which is called the state space model of the dynamic system.

* We denote by the
« State space X 3 x
« Control space U3 u
* Qutput space Y o3y

Special case: Linear
time-invariant systems

x = Ax + Bu
y=Cx




Recap: Control Objectives

* The control input is designed in general as a function of the output

u = f(y) to achieve:

« Regulation/Stabilization x(t) > x; ast - o
 Tracking x(t) = x4(t), x(t) » x4(t) ast —» oo

* Interaction

* The closed loop system is given by
x = fa(x)
where fo(x) = f(x) + g(x) - B(h(x))

The design of the control system is
based on analyzing the stability of
the closed-loop system !




Recap: State Space Models — Mechanical Systems

System State x State Space X
Mass-Spring-Damper (&) RxR=TR
Simple pendulum (9,6) (—m, ] X R=TS
n-link Manipulator (9,0) TQ
Satellite (R,w) SO0(3) x R3 =TS0(3)
Multirotor Aerial Vehicle (H,V) SE(3) x R® = TSE(3)

For mechanical systems in general, x = (g, q) € TQ, where
q € Q represents a configuration variable of the mechanical
system and g € T,Q denotes a velocity-like variable.
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 Equilibrium points and Stability notions




Geometric Nature of x(t)

f(x(t))

* Euclidean case X = R™:
© X; e R Flow on a 2D Manifold: Animation
* x, ER"
 f:R" - R"

* Non-Euclidean case:
* x; EX
* X, € T, X
s fix, €EX P x €T,X

The map f creates a vector field o € I'(TX) on the state
space manifold of: X' — TX defined by:
or(x) = (x, f (x)) € TX, with f(x) € T,X




Geometric Nature of x(t) = f(x(t))

* Euclidean case X = R™:
 x; ER"
« X, € R"
 f:R" - R"

* Non-Euclidean case:
*x €EX
e X, € T, X
s fix, €EX P x €T, X

Integral Curves

While f(x) represents the velocity of a particle at

integral curves of of. every point, the int_egral curve represents the o
trajectory of a particle moving along this velocity field.

The solution of the dynamical system x(t) is given by the




Geometric Nature of x(t)

f(x(t))

* Euclidean case X = R™:
© X; e R Flow on a 2D Manifold: Animation
* x, ER"
 f:R" - R"

* Non-Euclidean case:
* x; EX
* X, € T, X
s fix, €EX P x €T, X

Stability analysis

By analyzing properties of f or g¢, we can infer how the

system’s state x(t) will evolve with time, without explicitly
computing the solution as a function of time.




Equilibrium Points

* Given or € I'(TX), a point x, € X In the state space Is called an
equilibrium point for o If and only If
flx.) =0

* Intuitively, an equilibrium point is a state x, at which the system
state remains for all time, once it reaches It.

 Equilibrium points are also referred to as “fixed points” or “critical
points” of the system x(t) = f(x(t)).




Stablility of Equilibrium Points

* An equilibrium point x, of of Is said to be:

Stable

Unstable

Locally asymptotically
stable

Globally asymptotically
stable

If integral curves of o stay “close” to x,

If It IS not stable

If it is stable and integral curves of o
converge to x, only within aregion U c X

If it is stable and integral curves of o
converge to x, forall x € X

Stable x; Unstable x Locally asym. stable x,



Phase Portrait

* A phase portrait is a visual representation of the trajectories of a
dynamical system in phase space.

* |t helps illustrate the behavior of integral curves and the stability of
equilibrium points.
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« Case study: Pendulum




Equilibrium points of pendulum

« Consider the state-space model of the pendulum given by

X *2
()= (2 2r, Sy =/

mlL?2

where x; = 6, x, = 6.




Equilibrium points of pendulum

« Consider the state-space model of the pendulum given by
. X5
()= (-2, — i) =
2 miz”"% 1
where x; = 6, x, = 6.
* To find the equilibrium points x,, we set f(x) = 0:
b g

xXo = () . ——X, —=sinx,; =0




Equilibrium points of pendulum

« Consider the state-space model of the pendulum given by
. X5
()= (-2, — i) =
2 miz”"% 1
where x; = 6, x, = 6.
* To find the equilibrium points x,, we set f(x) = 0, which simplifies to
X, =0, sinx; =0

« Solving for x; € R, we get:
sinx; =0 = x;=knm, k €Z




Equilibrium points of pendulum

« Consider the state-space model of the pendulum given by
. X5
X1\ _ —.
()= (2 2r, Sy =/
where x; = 6, x, = 6.
* To find the equilibrium points x,, we set f(x) = 0, which simplifies to
X, =0, sinx; =0

« Solving for x; € R, we get:
sinx; =0 = x;=knm, k €Z

- However, recall that x; = 8 € (—m, ] = S, thus the system
has only two equilibrium points

x,. = (0,0) x, = (m,0)

Downward position Upward position




MATLAB Code

Phase qutralt
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02

Damping Coefficient:

Simulation Time (s):




Equilibrium points of pendulum

* |In summary, the state space model

X4 X2
]~ —Lx — gsinx
X2 mI2"% [ 1

has an asymptotically stable equilibrium at x, = (0,0) and an
unstable equilibrium at x, = (m, 0).

x, = (0,0) x, = (m,0)
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* Lyapunov’s indirect method




Phase Portrait Limitation

« A phase portrait has several useful properties:

« |t allows us to visualize what goes on in a nonlinear system starting from
various initial conditions, without having to solve the nonlinear equations

analytically.
* |t is not restricted to small or smooth nonlinearities, but applies equally well

to strong nonlinearities.

* However, its main disadvantage Is:
* It is only restricted to 2" order dynamical systems (which correspond to 15t
order mechanical systems !)




Lyapunov stability

* The most useful and general approach for studying the stability of
nonlinear dynamical systems is the theory introduced in the late 19t
century by the Russian mathematician Lyapunov.

 His work introduced two methods:

 Indirect Method: studies nonlinear local stability
around an equilibrium point x, from stability
properties of its linear approximation.

« Direct Method: not restricted to local motion.
Stability of nonlinear system is studied by proposing
a scalar “energy-like” function V: X — R for the
system and examining its time variation

Aleksandr Mikhailovich
Lyapunov (1857-1918) was a

Russian mathematician,

mechanic and physicist.
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov



https://en.wikipedia.org/wiki/Aleksandr_Lyapunov

Recall: Taylor series expansion

« Given a smooth function f: R" - R, the Taylor series expansion
of order k around a point x, € R™ expresses f(x) as a sum
of k derivatives evaluated at x,.

* Case k = 1:
fQx) = f(xo) + df (x0) (x — xop),
where df = (;Tf - aa;) is a “covector field”
1 n

df: R" - (IR")
defined such that df (x) = (:Tf (X052 (x)) € (R™)* is a covector.
1 n




Recall: Taylor series expansion

* Now suppose f: R" - R", the Taylor series expansion of order 1
around a point x, € R" is given by

f(x) = f(xo) + Jr(x0)(x — X0),

where J¢(xy) € R™" is the Jacobian matrix given by
df, (x) /SQ (x) - gi (X)\
o - ( ) R
d fn(x)

afn (x) - gf; (x)/

axl




Lyapunov's indirect method

 Consider the nonlinear system x = f(x) with equilibrium point x,.
The linearization of this system around the equilibrium point x, Is
given by:

z=Az
where z == x —x, €R" A:= J¢(x,).




Lyapunov's indirect method

 Consider the nonlinear system x = f(x) with equilibrium point x.,.
The linearization of this system around the equilibrium point x, Is

given by:
z=Az
where z == x —x, €R" A:= J¢(x,).
« Stability Conditions

« Asymptotic Stability: If all eigenvalues of A have negative real parts, then x, is locally
asymptotically stable for the nonlinear system.

 Instability: If at least one eigenvalue of A has a positive real part, then x, is unstable for the
nonlinear system.

* Inconclusive Case: If some eigenvalues of A have zero real parts, Lyapunov’s Indirect

Method does not provide a definite answer, and higher-order nonlinear terms must be
considered.
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