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Recap: State Space Model

• A nonlinear dynamic system can be represented by a set of 
nonlinear differential equations in the form

ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

𝑦 = ℎ 𝑥

which is called the state space model of the dynamic system.

• We denote by the
• State space 𝒳 ∋ 𝑥

• Control space 𝒰 ∋ 𝑢

• Output space 𝒴 ∋ 𝑦
Special case: Linear 

time-invariant systems

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝐶 𝑥 



Recap: Control Objectives

• The control input is designed in general as a function of the output 
𝑢 = 𝛽 𝑦  to achieve:

• Regulation/Stabilization  𝑥 𝑡 → 𝑥𝑑  as 𝑡 → ∞

• Tracking    𝑥 𝑡 → 𝑥𝑑(𝑡), ሶ𝑥 𝑡 → ሶ𝑥𝑑(𝑡)  as 𝑡 → ∞

• Interaction

• The closed loop system is given by

ሶ𝑥 = 𝑓cl 𝑥  

where 𝑓cl 𝑥 ≔ 𝑓 𝑥 + 𝑔 𝑥 ⋅ 𝛽 ℎ 𝑥

The design of the control system is 

based on analyzing the stability of 

the closed-loop system !



Recap: State Space Models – Mechanical Systems

System State 𝑥 State Space 𝒳

Mass-Spring-Damper 𝜉, ሶ𝜉 ℝ × ℝ ≅ 𝑇ℝ

Simple pendulum 𝜃, ሶ𝜃 (−𝜋, 𝜋] × ℝ ≅ 𝑇𝕊

𝑛-link Manipulator 𝜃, ሶ𝜃 𝑇𝑄

Satellite 𝑅, 𝜔 𝑆𝑂 3 × ℝ3 ≅ 𝑇𝑆𝑂 3

Multirotor Aerial Vehicle 𝐻, 𝒱 𝑆𝐸 3 × ℝ6 ≅ 𝑇𝑆𝐸 3

For mechanical systems in general, 𝑥 = 𝑞, ሶ𝑞 ∈ 𝑇𝑄, where 

𝑞 ∈ 𝑄 represents a configuration variable of the mechanical 

system and ሶ𝑞  ∈ 𝑇𝑞𝑄 denotes a velocity-like variable.
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Geometric Nature of ሶ𝑥(𝑡) =  𝑓 𝑥(𝑡)

• Euclidean case 𝒳 = ℝ𝒏:
• 𝑥𝑡 ∈ ℝ𝒏

• ሶ𝑥𝑡 ∈ ℝ𝒏

• 𝑓: ℝ𝒏 → ℝ𝒏

• Non-Euclidean case:
• 𝑥𝑡 ∈ 𝒳

• ሶ𝑥𝑡 ∈ 𝑇𝒙𝒳

• 𝑓: 𝑥𝑡 ∈ 𝒳 ↦ ሶ𝑥𝑡 ∈ 𝑇𝒙𝒳

The map 𝑓 creates a vector field 𝜎𝑓 ∈ Γ(𝑇𝒳) on the state 

space manifold 𝜎𝑓: 𝒳 → 𝑇𝒳 defined by:

𝜎𝑓 𝑥 ≔ 𝑥, 𝑓 𝑥 ∈ 𝑇𝒳, with 𝑓 𝑥 ∈ 𝑇𝒙𝒳
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The solution of the dynamical system 𝑥(𝑡) is given by the 

integral curves of 𝜎𝑓.

Integral Curves

While 𝑓 𝑥  represents the velocity of a particle at 

every point, the integral curve represents the 

trajectory of a particle moving along this velocity field.
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By analyzing properties of 𝑓 or 𝜎𝑓, we can infer how the 

system’s state 𝑥(𝑡) will evolve with time, without explicitly 

computing the solution as a function of time.

Stability analysis



Equilibrium Points

• Given 𝜎𝑓 ∈ Γ(𝑇𝒳), a point 𝑥∗ ∈ 𝒳 in the state space is called an 
equilibrium point for 𝜎𝑓 if and only if

𝑓 𝑥∗ = 0 

• Intuitively, an equilibrium point is a state 𝑥∗ at which the system 
state remains for all time, once it reaches it.

• Equilibrium points are also referred to as “fixed points” or “critical 
points” of the system ሶ𝑥(𝑡) =  𝑓 𝑥(𝑡) .



Stability of Equilibrium Points

• An equilibrium point 𝑥∗ of 𝜎𝑓 is said to be:

• Stable If integral curves of 𝜎𝑓 stay “close” to 𝑥∗ 

• Unstable If it is not stable

• Locally asymptotically 

stable

If it is stable and integral curves of 𝜎𝑓 

converge to 𝑥∗ only within a region U ⊂ 𝒳 

• Globally asymptotically 

stable

If it is stable and integral curves of 𝜎𝑓 

converge to 𝑥∗ for all 𝑥 ∈ 𝒳

Stable 𝑥0 Unstable 𝑥0 Locally asym. stable 𝑥0



Phase Portrait

• A phase portrait is a visual representation of the trajectories of a 
dynamical system in phase space. 

• It helps illustrate the behavior of integral curves and the stability of 
equilibrium points.
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Equilibrium points of pendulum

• Consider the state-space model of the pendulum given by

ሶ𝑥1

ሶ𝑥2
=

𝑥2

−
𝑏

𝑚𝐿2 𝑥2  −
𝑔

𝐿
sin 𝑥1

=: 𝑓(𝑥) 

where 𝑥1 = 𝜃, 𝑥2 = ሶ𝜃.

ሶ𝜃
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Equilibrium points of pendulum

• Consider the state-space model of the pendulum given by

ሶ𝑥1

ሶ𝑥2
=

𝑥2

−
𝑏

𝑚𝐿2 𝑥2  −
𝑔

𝐿
sin 𝑥1

=: 𝑓(𝑥) 

where 𝑥1 = 𝜃, 𝑥2 = ሶ𝜃.

• To find the equilibrium points 𝑥∗, we set 𝑓 𝑥 = 0, which simplifies to 
𝑥2 = 0 ,  sin 𝑥1 = 0 

• Solving for 𝑥1 ∈ ℝ​, we get:
sin 𝑥1 = 0 ⇒  𝑥1 = 𝑘𝜋, 𝑘 ∈ ℤ

• However, recall that 𝑥1 = 𝜃 ∈ −𝜋, 𝜋 ≅ 𝕊1, thus the system

   has only two equilibrium points

ሶ𝜃
Downward position Upward position

𝑥∗ = 0,0 𝑥∗ = 𝜋, 0



MATLAB Code



Equilibrium points of pendulum

• In summary, the state space model

ሶ𝑥1

ሶ𝑥2
=

𝑥2

−
𝑏

𝑚𝐿2 𝑥2  −
𝑔

𝐿
sin 𝑥1

 

has an asymptotically stable equilibrium at 𝑥∗ = 0,0  and an 

unstable equilibrium at 𝑥∗ = 𝜋, 0 .

𝑥∗ = 𝜋, 0𝑥∗ = 0,0
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Phase Portrait Limitation

• A phase portrait has several useful properties:
• It allows us to visualize what goes on in a nonlinear system starting from 

various initial conditions, without having to solve the nonlinear equations 
analytically.

• It is not restricted to small or smooth nonlinearities, but applies equally well 
to strong nonlinearities.

• However, its main disadvantage is:
• It is only restricted to 2nd order dynamical systems (which correspond to 1st 

order mechanical systems !)



Lyapunov stability

• The most useful and general approach for studying the stability of 
nonlinear dynamical systems is the theory introduced in the late 19th 
century by the Russian mathematician Lyapunov.

Aleksandr Mikhailovich 

Lyapunov (1857-1918) was a 

Russian mathematician, 

mechanic and physicist.
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov

• His work introduced two methods:

• Indirect Method: studies nonlinear local stability 

around an equilibrium point 𝑥∗ from stability 

properties of its linear approximation.

• Direct Method:  not restricted to local motion. 

Stability of nonlinear system is studied by proposing 

a scalar “energy-like” function 𝑉: 𝒳 → ℝ for the 

system and examining its time variation

https://en.wikipedia.org/wiki/Aleksandr_Lyapunov


Recall: Taylor series expansion

• Given a smooth function 𝑓: ℝ𝑛 → ℝ, the Taylor series expansion 
of order 𝑘 around a point 𝑥0 ∈ ℝ𝑛 expresses 𝑓 𝑥  as a sum 
of 𝑘 derivatives evaluated at 𝑥0.

• Case 𝑘 = 1:
𝑓 𝑥 ≈ 𝑓 𝑥0 + 𝑑𝑓(𝑥0)(𝑥 − 𝑥0),

where 𝑑𝑓 ≔
𝜕𝑓

𝜕𝑥1
, ⋯ ,

𝜕𝑓

𝜕𝑥𝑛
 is a “covector field”

𝑑𝑓: ℝ𝑛 → ℝ𝑛 ∗

defined such that 𝑑𝑓 𝑥 =
𝜕𝑓

𝜕𝑥1
(𝑥), ⋯ ,

𝜕𝑓

𝜕𝑥𝑛
(𝑥) ∈ ℝ𝑛 ∗  is a covector.



Recall: Taylor series expansion

• Now suppose 𝑓: ℝ𝑛 → ℝ𝑛, the Taylor series expansion of order 1 
around a point 𝑥0 ∈ ℝ𝑛 is given by

𝑓 𝑥 ≈ 𝑓 𝑥0 + 𝐽𝑓(𝑥0)(𝑥 − 𝑥0), 

where 𝐽𝑓 𝑥0 ∈ ℝ𝑛×𝑛 is the Jacobian matrix given by

𝐽𝑓 𝑥 =
𝑑𝑓1 𝑥

⋮
𝑑𝑓𝑛 𝑥

=

𝜕𝑓1

𝜕𝑥1
𝑥 ⋯

𝜕𝑓1

𝜕𝑥𝑛
𝑥

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
𝑥 ⋯

𝜕𝑓𝑛

𝜕𝑥𝑛
𝑥

 



Lyapunov’s indirect method

• Consider the nonlinear system  ሶ𝑥 = 𝑓 𝑥  with equilibrium point 𝑥∗. 
The linearization of this system around the equilibrium point 𝑥∗ is 
given by:

ሶ𝑧 = 𝐴 𝑧

where 𝑧 ≔ 𝑥 − 𝑥∗ ∈ ℝ𝑛, 𝐴 ≔ 𝐽𝑓 𝑥∗ .



Lyapunov’s indirect method

• Consider the nonlinear system  ሶ𝑥 = 𝑓 𝑥  with equilibrium point 𝑥∗. 
The linearization of this system around the equilibrium point 𝑥∗ is 
given by:

ሶ𝑧 = 𝐴 𝑧

where 𝑧 ≔ 𝑥 − 𝑥∗ ∈ ℝ𝑛, 𝐴 ≔ 𝐽𝑓 𝑥∗ .

• Stability Conditions
• Asymptotic Stability: If all eigenvalues of 𝐴 have negative real parts, then 𝑥∗ is locally 

asymptotically stable for the nonlinear system.

• Instability: If at least one eigenvalue of 𝐴 has a positive real part, then 𝑥∗ is unstable for the 

nonlinear system.

• Inconclusive Case: If some eigenvalues of 𝐴 have zero real parts, Lyapunov’s Indirect 

Method does not provide a definite answer, and higher-order nonlinear terms must be 

considered.
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