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Recap: State Space Model

* A nonlinear dynamic system can be represented by a set of
nonlinear differential equations in the form

x=flx)+gx)u
y = h(x)
which is called the state space model of the dynamic system.
* We are focusing on analyzing the stabllity of systems of the form

x = f(x)

Special case: Linear
time-invariant systems

x = Ax + Bu
y=Cx




Recap: State Space Models — Mechanical Systems

System State x State Space X
Mass-Spring-Damper (&) RxR=TR
Simple pendulum (9,6) (—m, ] X R=TS
n-link Manipulator (9,0) TQ
Satellite (R,w) SO0(3) x R3 =TS0(3)
Multirotor Aerial Vehicle (H,V) SE(3) x R® = TSE(3)

For mechanical systems in general, x = (g, q) € TQ, where
q € Q represents a configuration variable of the mechanical
system and g € T,Q denotes a velocity-like variable.




Recap: Geometric Nature of x(t) = f(x(t))

* Euclidean case X = R™:
 x; ER"
 x; €ER"
 f:R" - R"

* Non-Euclidean case:
*x €EX
* X, ET,X
s fix; EX > x ET,X

Flow on a 2D Manifold: Animation

Integral Curves

The solution of the dynamical system x(t) is given by the While f(x) represents the velocity of a particle at
every point, the integral curve represents the

integral curves of o. _ . . . _
trajectory of a particle moving along this velocity field.




Recap: Equilibrium Points

* Given or € I'(TX), a point x, € X In the state space Is called an
equilibrium point for o If and only If
flx.) =0

* Intuitively, an equilibrium point is a state x, at which the system
state remains for all time, once it reaches It.




Recap: Stability of Equilibrium Points

* An equilibrium point x, of of Is said to be:

Stable

Unstable

Locally asymptotically
stable

Globally asymptotically
stable

If integral curves of o stay “close” to x,

If It IS not stable

If it is stable and integral curves of o
converge to x, only within aregion U c X

If it is stable and integral curves of o
converge to x, forall x € X

Stable x; Unstable x Locally asym. stable x,



Recap: Equilibrium points of pendulum

« Consider the state-space model of the pendulum given by

X *2
()= (C 2,y — iy ) =

mlL?2

where x; = 6, x, = 6.




Recap: Equilibrium points of pendulum

« Consider the state-space model of the pendulum given by
X1 X2
()= <_L Lo ) = f(x)
Xo 2 X2~ SInX
where x; = 6, x, = 6.
* To find the equilibrium points x,, we set f(x) = 0, which simplifies to
X, =0, sinx; =0
» Solving for x; = 6 € (—m, ] = S*, we get:
sinx; =0 = x;=0,0rx;=m
* Thus, the system has only two equilibrium points

x,. = (0,0) x, = (m,0)

Downward position Upward position




Recap: Stability of equilibrium points of pendulum

* |In summary, the state space model

X4 X2
]~ —Lx — gsinx
X2 mI2"% [ 1

has an asymptotically stable equilibrium at x, = (0,0) and an
unstable equilibrium at x, = (m, 0).

x, = (0,0) x, = (m,0)
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Recap: Lyapunov stability

* The most useful and general approach for studying the stability of
nonlinear dynamical systems is the theory introduced in the late 19t
century by the Russian mathematician Lyapunov.

 His work introduced two methods:

 Indirect Method: studies nonlinear local stability
around an equilibrium point x, from stability
properties of its linear approximation.

« Direct Method: not restricted to local motion.
Stability of nonlinear system is studied by proposing
a scalar “energy-like” function V: X — R for the
system and examining its time variation

Aleksandr Mikhailovich
Lyapunov (1857-1918) was a

Russian mathematician,

mechanic and physicist.
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov



https://en.wikipedia.org/wiki/Aleksandr_Lyapunov

Recap: Lyapunov's indirect method

 Consider the nonlinear system x = f(x) with equilibrium point x.,.
The linearization of this system around the equilibrium point x, Is

given by:
Z=Az
where z := x —x, € R"™ and A := J¢(x,) is the Jacobian of f(x)
evaluated at the equilibrium points.

o (B0 - 200
dfn(x) Z% (x) - niy

0xn




Recap: Lyapunov's indirect method

 Consider the nonlinear system x = f(x) with equilibrium point x.,.
The linearization of this system around the equilibrium point x, Is
given by:

z=Az

where z := x —x, € R"™ and A := J¢(x,) is the Jacobian of f(x)

evaluated at the equilibrium points.

 Stability Conditions:

Is there any 4; with ~ x, is unstable for the
Re(4;,) >0 7 ~ nonlinear system.
Compute .
eig(A) = Izll 1) J| Isthere any 4; with . Lyapunov’s indirect
T ) nts . — 2 . .
with 2, € C Re(1;) =0 method is inconclusive
Do all 1; have . x.is locally asymptotically

Re(4;) < 0? stable for the nonlinear system.




Outline

 Application of Lyapunov’s indirect method




Example 1. Pendulum

* The Jacobian of the pendulum dynamics is given by

) S—Z(x) g—i(x) B 0 1
]f(x)— o, %(x) _(—clcosxl —Cz)

axz

Pendulum dynamics:

(=(C 2, ngne) = (25)




Example 1. Pendulum

* The Jacobian of the pendulum dynamics is given by

) S—Z(x) g—i(x) B 0 1
]f(x)— o, %(x) _(—clcosxl —Cz)

dxo
e Let z; = A, z; and Z, = A, z, denote the linearization of the
nonlinear system around x, 1 = (0,0) and x, , := (1, 0), respectively:

Ay =Jp(x01) = (—001 —1(:2) Az = Jp(xe2) = (001 —102)

Pendulum dynamics:

()= (= oms ~20mm) = ()

mlL?




Example 1. Pendulum

« Below we show four contour plots that show how the real parts of the
eigenvalues of A; and A, vary as a function of (cy, ¢,).

MATLAB code is provided on
Blackboard
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Example 1. Pendulum

« Below we show four contour plots that show how the real parts of the
eigenvalues of A; and A, vary as a function of (cy, ¢,).

For A;,Re(4;) <0,
=~ x,1 = (0,0) is locally
asymptotically stable.

For A,,Re(4,) >0

X, o = (m,0) is unstable.

Re(),) for A1(6=0)

G 0re=gl;

AD

-0.5

-1

-0.5

1
0.5

I G I 1 I G
1 1.5 2 2.5

c1

Re(),)for A2 (6= )

—= oI

35—

T -3 —

s s

A
95

T

.3 |

— 25 ,.,7

0.5

cl

Re(),) for A1(6=0)

B R R

A

?

-0.5 0.5

1 1 G\ 1
0.5 1 1.5 2
cl

1
2.5

g5 STt ——

Re(),) for A2 (6= )

0

i als0. 50
SRR

G150 54)
AT

0.5 1 15 2
cl

25




Example 2: Satellite

« Consider a rigid body with principal moments of inertia and angular
velocity components
] — diag(]11]2)]3)1 W = ((1)1, Wy, (,()3)
expressed In the principal axes.

* In the absence of external torques, The governing equations are
given by
*R=R®&

* @ =—]Hw A w)




Example 2: Satellite

* |In the absence of external torques, The governing equations are
given by
*R=R®
* b =] (A ]w)
* Note that the second equation is independent of the configuration R,

which implies that we can analyze the stablility of the system by only
considering the momentum balance equation.




Example 2: Satellite

« We express the momentum balance w = —] 1(w A Jw) as

. J2—]

Wi = = =2 Wy W3
J1

. J3—]J

(1)2 — 3 L (J)3(J)1
J2

. J1—]

W3 = —2 w1 Wy
I3

* An equilibrium point w, € R3 for the system is one
for which w; = w, = w3 = 0.




Example 2: Satellite

* The four equilibrium points of the nonlinear system

a-)l — ]2_]3 (1)2(1)3
J1
W, = J3—]1 Wa Wy
J2
a')3 — ]1_]2 (1)1(,()2
J3
are.
« Trivial equilibrium: w, o = (0,0,0)
« Spin about &, only: w.p =(0,0,0), Q+0
« Spin about &, only: w..=(000), Q=#0

« Spin about &5 only: w.g =10000), Q+0




Example 2: Satellite

 To analyze the stabllity of these equilibrium points, we will assume
that J; > J, > J; > 0, and thus we can rewrite the system as:

. J2—]
w1 = 22 W) W3 :
Wy = w3 W1 | Wy = CrWw3zW1q
2 .
: J1—] W2 = CaW1 W
W3 = T W10, 3 Sl
.]3 with C1,C3 > O, and Co <0




Example 2: Satellite

* The Jacobian of the system is given by

9 9 9
. (L) Py i)
W1 = C1(W>W 0w, dw, 0ws
.1 1%Y2%3 of, of, of, 0 CiW3 CLW,
(1.)2 = CrW3W1 Jr(w) = a_wl(‘”) a_wz(‘“) a—ws(w) = Zzi c3(31)1 Cz(()1)1
W3 = C3W1W; Ofs .y 9z .y 9

\awl(m G (@) 5.2 (@)




Example 2: Satellite

* By evaluating the Jacobian at each equilibrium point, we get the

linearized systems
0 Ciwz C1Wwy
Jflw)=| cawz 0 o4

C3W, C3Wq 0

Zg =]f(w*,a)zc,1 = Zp =]f(w*,b)zb = Z :]f(“)*,C)Zc = Zg :]f(a)*,d)Zd =

0.0 0 0 0 0 0 0 ¢0 0 &0 0
<0 0 O) Zg 0 0 Czﬂ Zp 0 0 0 Zc <C2.Q. 0 O) Z4q
0 0 0 0 ;0 0 Q0 0

0 0 O




Example 2: Satellite

Recall ¢;,c3 > 0,and ¢, <0

* By evaluating the Jacobian at each equilibrium point, we get the
linearized systems

Jr(w) = (

0
Cr3
C3W-

C1(1)3 C1W-y
0 Crq
C3Wq 0

Zg = W

— W, q
Zg = ]f (w*,a)za —

)=

0 0 O
(O 0 O
0 0 O

A=

Ay =

Az =

Zp = W — a)*,b
zp = J(w.p)zp =

0O O 0
0 0 Czﬂ Zp
0 .0 0

Al -
A’Z = Q\/CZC:.}
AS == _Q\/C2C3

Zc, = W

— W,
Zc =]f(w*,c)zc =

0 0 O
0 0 0 |z
cs 0 O

Zg = W — a)*’d
Za = J(Waaq)zq =

0 c¢Q 0
<C2Q 0 O)Zd

/11 =
Az = Q\/C1C3
/13 = _.Q.\/C1C3

0 0O O
Al —
/12 = .Q.\/C1C2

/13 - _Q\/ C1C»




Example 2: Satellite

Recall ¢;,c3 > 0,and ¢, <0

* By evaluating the Jacobian at each equilibrium point, we get the
linearized systems

Zg = W

Zg =]f(w*,a)za —

0 0 O
0 0 0]z,
0 0 O

/11 -
)«2 = Py
\
Ao = \V2
3 GO“G

zp = J(w.p)zp =

0O O 0
0 0 Czﬂ Zp
0 .0 0

)'1 -
A’Z = Q\/CZC:.}

\
A3 = —Q\/ CyC3 A‘\G\\)s

A~ 4

\\

0 CLw3 C1Wo
Jflw)=| cawz 0 o4
C3W, C3Wq 0

Zc =]f(w*,c)zc =

0 0 O
0 0 0 |z
cs 0 O

/11 =
Az = Q\/C1C3
/13 = _.Q.\/C1C3

0\

Zg = W — a)*’d
Za = J(Waaq)zq =

0 c¢Q 0
<C2Q 0 O)Zd

\e
A2°

0 0O O
Al —
AZ = .Q.\/C1C2

oW
/13 - —Q\/ C1 CA«;\\)

W
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 Lyapunov’s direct method




Positive Definite Functions

« Before discussing Lyapunov’s direct method, we introduce the concept of a
positive definite function.

» Afunction V(x) Is said to be positive definite it
« V(0) =0
e V(x)>0 VvVx #0

« Examples x e R :
e Vi(x) = x? e Vo(x) = x*-0.13 x*




Positive Definite Functions

« Examples x e R :

e Vi(x) = x? e Vy(x) = x%-0.13 x*

* 11(0)=0 « V,(0)=0

e V;(x) >0 VvVx #0  V,(x) >0 (butnotVx # 0)

* Therefore V;(x) is * Therefore V,(x) is positive definite

positive definite globally only locally in the region |x| < 2.77.

V)
Vylx)




Positive Definite Functions

- Examples x € R? :
e Vi(x) = x2 + x2 ¢+ Vo(x) = xf + x5 — 0.13(xf + x3)




Lyapunov's Direct Method

x = f(x)

x* is an Eq. point of
the system
: Globally Asymptotically
Stable Asymptotically Stable Stable
Find a Lyapunov function Find a Lyapunov function Find a Lyapunov function
V(x) such that : V(x) such that: V(x) such that :
c V(x*) =0 e V(x*)=0 e V(x)=0
« V(x)>0 « V(x)>0 ¢« V(x)>0
« V(x) <0 « V(x) <0 « V(x)<0
\\ \\ - V() T as llx — x*|| - oo
V(x) is negative V(x) is negative _ _
semi-definite definite V(x) is radially

unbounded




Outline

» La Salle’s invariance principle




Motivation Example: Pendulum

« Consider the Pendulum dynamics with all parameters set to 1 for

simplicity:
5(1 _ xZ B .
(562) B (—Xz — SIn xl)' x1=06,x, =0

« Consider the Lyapunov function given by the total energy of the
system:

V(x) = %92 + (1 — cos 6)

V(x) > 0, but not radially unbounded

L | : |
Kinetic Potential
Energy Energy
V(x) =00 + 0sin® = 0(—6 —sinf) + Osing = —H2 V(x) < 0, therefore we can only

conclude that the origin is stable but not
asymptotically stable




Motivation

* In many physical or engineering systems (especially mechanical
systems with dissipation), we might only show V' (x) < 0 (i.e.,
negative semidefinite).

* That tells us the system’s “energy-like” quantity never increases, but
It might stay constant for certain motions.

» Simply applying Lyapunov’s theorem with negative semidefinite
V(x) gives us stability but not necessarily asymptotic stability.

 One solution Is to use the invariant set theorem attributed to J.P.
| aSalle



https://en.wikipedia.org/wiki/Joseph_P._LaSalle
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