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Recap: State Space Model

• A nonlinear dynamic system can be represented by a set of 
nonlinear differential equations in the form

ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

𝑦 = ℎ 𝑥

which is called the state space model of the dynamic system.

• We are focusing on analyzing the stability of systems of the form

ሶ𝑥 = 𝑓 𝑥

Special case: Linear 

time-invariant systems

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝐶 𝑥 



Recap: State Space Models – Mechanical Systems

System State 𝑥 State Space 𝒳

Mass-Spring-Damper 𝜉, ሶ𝜉 ℝ × ℝ ≅ 𝑇ℝ

Simple pendulum 𝜃, ሶ𝜃 (−𝜋, 𝜋] × ℝ ≅ 𝑇𝕊

𝑛-link Manipulator 𝜃, ሶ𝜃 𝑇𝑄

Satellite 𝑅, 𝜔 𝑆𝑂 3 × ℝ3 ≅ 𝑇𝑆𝑂 3

Multirotor Aerial Vehicle 𝐻, 𝒱 𝑆𝐸 3 × ℝ6 ≅ 𝑇𝑆𝐸 3

For mechanical systems in general, 𝑥 = 𝑞, ሶ𝑞 ∈ 𝑇𝑄, where 

𝑞 ∈ 𝑄 represents a configuration variable of the mechanical 

system and ሶ𝑞  ∈ 𝑇𝑞𝑄 denotes a velocity-like variable.



Recap: Geometric Nature of ሶ𝑥(𝑡) =  𝑓 𝑥(𝑡)

• Euclidean case 𝒳 = ℝ𝒏:
• 𝑥𝑡 ∈ ℝ𝒏

• ሶ𝑥𝑡 ∈ ℝ𝒏

• 𝑓: ℝ𝒏 → ℝ𝒏

• Non-Euclidean case:
• 𝑥𝑡 ∈ 𝒳

• ሶ𝑥𝑡 ∈ 𝑇𝒙𝒳

• 𝑓: 𝑥𝑡 ∈ 𝒳 ↦ ሶ𝑥𝑡 ∈ 𝑇𝒙𝒳

The solution of the dynamical system 𝑥(𝑡) is given by the 

integral curves of 𝜎𝑓.

Integral Curves

While 𝑓 𝑥  represents the velocity of a particle at 

every point, the integral curve represents the 

trajectory of a particle moving along this velocity field.



Recap: Equilibrium Points

• Given 𝜎𝑓 ∈ Γ(𝑇𝒳), a point 𝑥∗ ∈ 𝒳 in the state space is called an 
equilibrium point for 𝜎𝑓 if and only if

𝑓 𝑥∗ = 0 

• Intuitively, an equilibrium point is a state 𝑥∗ at which the system 
state remains for all time, once it reaches it.



Recap: Stability of Equilibrium Points

• An equilibrium point 𝑥∗ of 𝜎𝑓 is said to be:

• Stable If integral curves of 𝜎𝑓 stay “close” to 𝑥∗ 

• Unstable If it is not stable

• Locally asymptotically 

stable

If it is stable and integral curves of 𝜎𝑓 

converge to 𝑥∗ only within a region U ⊂ 𝒳 

• Globally asymptotically 

stable

If it is stable and integral curves of 𝜎𝑓 

converge to 𝑥∗ for all 𝑥 ∈ 𝒳

Stable 𝑥0 Unstable 𝑥0 Locally asym. stable 𝑥0



Recap: Equilibrium points of pendulum

• Consider the state-space model of the pendulum given by

ሶ𝑥1

ሶ𝑥2
=

𝑥2

−
𝑏

𝑚𝐿2 𝑥2  −
𝑔

𝐿
sin 𝑥1

=: 𝑓(𝑥) 

where 𝑥1 = 𝜃, 𝑥2 = ሶ𝜃.

ሶ𝜃



Recap: Equilibrium points of pendulum

• Consider the state-space model of the pendulum given by

ሶ𝑥1

ሶ𝑥2
=

𝑥2

−
𝑏

𝑚𝐿2 𝑥2  −
𝑔

𝐿
sin 𝑥1

=: 𝑓(𝑥) 

where 𝑥1 = 𝜃, 𝑥2 = ሶ𝜃.

• To find the equilibrium points 𝑥∗, we set 𝑓 𝑥 = 0, which simplifies to 
𝑥2 = 0 ,  sin 𝑥1 = 0 

• Solving for 𝑥1 = 𝜃 ∈ −𝜋, 𝜋 ≅ 𝕊1 ​, we get:

sin 𝑥1 = 0 ⇒  𝑥1 = 0, or 𝑥1 = 𝜋 

• Thus, the system has only two equilibrium points

ሶ𝜃Downward position Upward position

𝑥∗ = 0,0 𝑥∗ = 𝜋, 0



Recap: Stability of equilibrium points of pendulum

• In summary, the state space model

ሶ𝑥1

ሶ𝑥2
=

𝑥2

−
𝑏

𝑚𝐿2 𝑥2  −
𝑔

𝐿
sin 𝑥1

 

has an asymptotically stable equilibrium at 𝑥∗ = 0,0  and an 

unstable equilibrium at 𝑥∗ = 𝜋, 0 .

𝑥∗ = 𝜋, 0𝑥∗ = 0,0



Recap: MATLAB Code for Phase Portrait



Recap: Lyapunov stability

• The most useful and general approach for studying the stability of 
nonlinear dynamical systems is the theory introduced in the late 19th 
century by the Russian mathematician Lyapunov.

Aleksandr Mikhailovich 

Lyapunov (1857-1918) was a 

Russian mathematician, 

mechanic and physicist.
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov

• His work introduced two methods:

• Indirect Method: studies nonlinear local stability 

around an equilibrium point 𝑥∗ from stability 

properties of its linear approximation.

• Direct Method:  not restricted to local motion. 

Stability of nonlinear system is studied by proposing 

a scalar “energy-like” function 𝑉: 𝒳 → ℝ for the 

system and examining its time variation

https://en.wikipedia.org/wiki/Aleksandr_Lyapunov


Recap: Lyapunov’s indirect method

• Consider the nonlinear system  ሶ𝑥 = 𝑓 𝑥  with equilibrium point 𝑥∗. 
The linearization of this system around the equilibrium point 𝑥∗ is 
given by:

ሶ𝑧 = 𝐴 𝑧

where 𝑧 ≔ 𝑥 − 𝑥∗ ∈ ℝ𝑛 and 𝐴 ≔ 𝐽𝑓 𝑥∗  is the Jacobian of 𝑓 𝑥  
evaluated at the equilibrium points.

𝐽𝑓 𝑥 =
𝑑𝑓1 𝑥

⋮
𝑑𝑓𝑛 𝑥

=

𝜕𝑓1

𝜕𝑥1
𝑥 ⋯

𝜕𝑓1

𝜕𝑥𝑛
𝑥

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
𝑥 ⋯

𝜕𝑓𝑛

𝜕𝑥𝑛
𝑥

 



Recap: Lyapunov’s indirect method

• Consider the nonlinear system  ሶ𝑥 = 𝑓 𝑥  with equilibrium point 𝑥∗. 
The linearization of this system around the equilibrium point 𝑥∗ is 
given by:

ሶ𝑧 = 𝐴 𝑧

where 𝑧 ≔ 𝑥 − 𝑥∗ ∈ ℝ𝑛 and 𝐴 ≔ 𝐽𝑓 𝑥∗  is the Jacobian of 𝑓 𝑥  
evaluated at the equilibrium points.

• Stability Conditions:

Compute 

 𝑒𝑖𝑔 𝐴  ≔ 𝜆1, ⋯ 𝜆𝑛 , 

with 𝜆𝑖 ∈ ℂ

Do all 𝜆𝑖 have 

Re 𝜆𝑖 < 0? 

Is there any 𝜆𝑖 with 

Re 𝜆𝑖 > 0 ?

Is there any 𝜆𝑖 with 

Re 𝜆𝑖 = 0 ?

𝑥∗ is locally asymptotically 

stable for the nonlinear system.

𝑥∗ is unstable for the 

nonlinear system.

Lyapunov’s indirect 

method is inconclusive
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Example 1: Pendulum

• The Jacobian of the pendulum dynamics is given by

𝐽𝑓 𝑥 =

𝜕𝑓1

𝜕𝑥1
𝑥

𝜕𝑓1

𝜕𝑥2
𝑥

𝜕𝑓2

𝜕𝑥1
𝑥

𝜕𝑓2

𝜕𝑥2
𝑥

=
0 1

−𝑐1 cos 𝑥1 −𝑐2
 

Pendulum dynamics:

ሶ𝑥1

ሶ𝑥2
=

𝑥2

−
𝑏

𝑚𝐿2 𝑥2  −
𝑔

𝐿
sin 𝑥1

=:
𝑓1(𝑥)
𝑓2(𝑥)

    



Example 1: Pendulum

• The Jacobian of the pendulum dynamics is given by

𝐽𝑓 𝑥 =

𝜕𝑓1

𝜕𝑥1
𝑥

𝜕𝑓1

𝜕𝑥2
𝑥

𝜕𝑓2

𝜕𝑥1
𝑥

𝜕𝑓2

𝜕𝑥2
𝑥

=
0 1
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• Let ሶ𝑧1 = 𝐴1 𝑧1 and ሶ𝑧2 = 𝐴2 𝑧2 denote the linearization of the 

nonlinear system around 𝑥∗,1 ≔ 0,0  and 𝑥∗,2 ≔ 𝜋, 0 , respectively:

𝐴1 ≔ 𝐽𝑓 𝑥∗,1 =
0 1

−𝑐1 −𝑐2
                𝐴2 ≔ 𝐽𝑓 𝑥∗,2 =

0 1
𝑐1 −𝑐2

 

Pendulum dynamics:

ሶ𝑥1

ሶ𝑥2
=

𝑥2

−
𝑏

𝑚𝐿2 𝑥2  −
𝑔

𝐿
sin 𝑥1

=:
𝑓1(𝑥)
𝑓2(𝑥)

    



Example 1: Pendulum

• Below we show four contour plots that show how the real parts of the 
eigenvalues of 𝐴1 and 𝐴2 vary as a function of (𝑐1, 𝑐2).

MATLAB code is provided on 

Blackboard



Example 1: Pendulum

• Below we show four contour plots that show how the real parts of the 
eigenvalues of 𝐴1 and 𝐴2 vary as a function of (𝑐1, 𝑐2).

For A2, Re 𝜆2 > 0 

∴ 𝑥∗,2 ≔ 𝜋, 0  is unstable.

For A1, Re 𝜆𝑖 < 0,
∴ 𝑥∗,1 ≔ 0,0  is locally 

asymptotically stable.



Example 2: Satellite

• Consider a rigid body with principal moments of inertia and angular 
velocity components

𝐽 = diag  𝐽1, 𝐽2, 𝐽3 ,    𝜔 = (𝜔1, 𝜔2, 𝜔3)  

expressed in the principal axes. 

• In the absence of external torques, The governing equations are 
given by

• ሶ𝑅 = 𝑅 ෥𝜔 
• ሶ𝜔 = −𝐽−1(𝜔 ∧ 𝐽𝜔)

Ƹ𝑒1

Ƹ𝑒2

Ƹ𝑒3

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠𝜔



Example 2: Satellite

• In the absence of external torques, The governing equations are 
given by

• ሶ𝑅 = 𝑅 ෥𝜔 
• ሶ𝜔 = −𝐽−1(𝜔 ∧ 𝐽𝜔)

• Note that the second equation is independent of the configuration 𝑅, 
which implies that we can analyze the stability of the system by only 
considering the momentum balance equation.

Ƹ𝑒1

Ƹ𝑒2

Ƹ𝑒3

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠𝜔



Example 2: Satellite

• We express the momentum balance ሶ𝜔 = −𝐽−1(𝜔 ∧ 𝐽𝜔) as

ሶ𝜔1 =
𝐽2−𝐽3 

𝐽1
𝜔2𝜔3 

ሶ𝜔2 =
𝐽3−𝐽1 

𝐽2
𝜔3𝜔1 

ሶ𝜔3 =
𝐽1−𝐽2 

𝐽3
𝜔1𝜔2 

• An equilibrium point 𝜔∗ ∈ ℝ3 for the system is one

for which ሶ𝜔1 = ሶ𝜔2 = ሶ𝜔3 = 0.

Ƹ𝑒1

Ƹ𝑒2

Ƹ𝑒3

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠𝜔



Example 2: Satellite

• The four equilibrium points of the nonlinear system

ሶ𝜔1 =
𝐽2−𝐽3 

𝐽1
𝜔2𝜔3 

ሶ𝜔2 =
𝐽3−𝐽1 

𝐽2
𝜔3𝜔1 

ሶ𝜔3 =
𝐽1−𝐽2 

𝐽3
𝜔1𝜔2 

are:
• Trivial equilibrium:     𝜔∗,𝑎 = (0,0,0)

• Spin about ො𝒆𝟏 only:     𝜔∗,𝑏 = Ω, 0, 0 ,  Ω ≠ 0

• Spin about ො𝒆𝟐 only:     𝜔∗,𝑐 = 0, Ω, 0 ,  Ω ≠ 0

• Spin about ො𝒆𝟑 only:     𝜔∗,𝑑 = 0, 0, Ω ,  Ω ≠ 0

Ƹ𝑒1

Ƹ𝑒2

Ƹ𝑒3

ො𝑥𝑠

ො𝑦𝑠

Ƹ𝑧𝑠𝜔



Example 2: Satellite

• To analyze the stability of these equilibrium points, we will assume 
that 𝐽1 > 𝐽2 > 𝐽3 > 0, and thus we can rewrite the system as:

ሶ𝜔1 =
𝐽2−𝐽3 

𝐽1
𝜔2𝜔3 

ሶ𝜔2 =
𝐽3−𝐽1 

𝐽2
𝜔3𝜔1 

ሶ𝜔3 =
𝐽1−𝐽2 

𝐽3
𝜔1𝜔2 

ሶ𝜔1 = 𝑐1𝜔2𝜔3 

ሶ𝜔2 = 𝑐2𝜔3𝜔1 

ሶ𝜔3 = 𝑐3𝜔1𝜔2 

with 𝑐1, 𝑐3 > 0, and  𝑐2 < 0



Example 2: Satellite

• The Jacobian of the system is given by

𝐽𝑓 𝜔 =

𝜕𝑓1

𝜕𝜔1
𝜔

𝜕𝑓1

𝜕𝜔2
𝜔

𝜕𝑓1

𝜕𝜔3
𝜔

𝜕𝑓2

𝜕𝜔1
𝜔

𝜕𝑓2

𝜕𝜔2
𝜔

𝜕𝑓2

𝜕𝜔3
𝜔

𝜕𝑓3

𝜕𝜔1
𝜔

𝜕𝑓3

𝜕𝜔2
𝜔

𝜕𝑓3

𝜕𝜔3
𝜔

=  

0 𝑐1𝜔3 𝑐1𝜔2

𝑐2𝜔3 0 𝑐2𝜔1

𝑐3𝜔2 𝑐3𝜔1 0

ሶ𝜔1 = 𝑐1𝜔2𝜔3 

ሶ𝜔2 = 𝑐2𝜔3𝜔1 

ሶ𝜔3 = 𝑐3𝜔1𝜔2 



Example 2: Satellite

• By evaluating the Jacobian at each equilibrium point, we get the 
linearized systems

𝐽𝑓 𝜔 =  

0 𝑐1𝜔3 𝑐1𝜔2

𝑐2𝜔3 0 𝑐2𝜔1

𝑐3𝜔2 𝑐3𝜔1 0

𝑧𝑎 ≔ 𝜔 − 𝜔∗,𝑎

ሶ𝑧𝑎 = 𝐽𝑓 𝜔∗,𝑎 𝑧𝑎 =

 
0 0 0
0 0 0
0 0 0

 𝑧𝑎

𝑧𝑏 ≔ 𝜔 − 𝜔∗,𝑏

ሶ𝑧𝑏 = 𝐽𝑓 𝜔∗,𝑏 𝑧𝑏 =

 
0 0 0
0 0 𝑐2Ω
0 𝑐3Ω 0

 𝑧𝑏

𝑧𝑐 ≔ 𝜔 − 𝜔∗,𝑐

ሶ𝑧𝑐 = 𝐽𝑓 𝜔∗,𝑐 𝑧𝑐 =

 
0 0 𝑐1Ω
0 0 0

𝑐3Ω 0 0
 𝑧𝑐

𝑧𝑑 ≔ 𝜔 − 𝜔∗,𝑑

ሶ𝑧𝑑 = 𝐽𝑓 𝜔∗,𝑑 𝑧𝑑 =

 
0 𝑐1Ω 0

𝑐2Ω 0 0
0 0 0

𝑧𝑑 
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• By evaluating the Jacobian at each equilibrium point, we get the 
linearized systems
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0 0 0
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ሶ𝑧𝑏 = 𝐽𝑓 𝜔∗,𝑏 𝑧𝑏 =

 
0 0 0
0 0 𝑐2Ω
0 𝑐3Ω 0
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𝑧𝑐 ≔ 𝜔 − 𝜔∗,𝑐
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0 0 𝑐1Ω
0 0 0
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𝑧𝑑 ≔ 𝜔 − 𝜔∗,𝑑

ሶ𝑧𝑑 = 𝐽𝑓 𝜔∗,𝑑 𝑧𝑑 =

 
0 𝑐1Ω 0

𝑐2Ω 0 0
0 0 0

𝑧𝑑 

𝜆1 = 0
𝜆2 = 0  
𝜆3 = 0 

𝜆1 = 0 
𝜆2 = Ω 𝑐2𝑐3 
𝜆3 = −Ω 𝑐2𝑐3 

Recall 𝑐1, 𝑐3 > 0, and  𝑐2 < 0

𝜆1 = 0 
𝜆2 = Ω 𝑐1𝑐3 
𝜆3 = −Ω 𝑐1𝑐3 

𝜆1 = 0 
𝜆2 = Ω 𝑐1𝑐2 
𝜆3 = −Ω 𝑐1𝑐2 
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Positive Definite Functions

• Before discussing Lyapunov’s direct method, we introduce the concept of a 
positive definite function.

• A function 𝑉(𝒙) is said to be positive definite it
• 𝑉 𝟎 = 0

• 𝑉 𝒙 > 0 ∀𝒙 ≠ 𝟎 

• Examples 𝑥 ∈ ℝ :
• 𝑉1 𝑥 =  𝑥2 • 𝑉2 𝑥 =  𝑥2 - 0.13 𝑥4 



Positive Definite Functions

• Examples 𝑥 ∈ ℝ :
• 𝑉1 𝑥 =  𝑥2 • 𝑉2 𝑥 =  𝑥2 - 0.13 𝑥4 

• 𝑉1 0 = 0
• 𝑉1 𝑥 > 0 ∀𝑥 ≠ 0 

• Therefore 𝑉1 𝑥  is 

positive definite globally

• 𝑉2 0 = 0
• 𝑉2 𝑥 > 0 (but not ∀𝑥 ≠ 0) 

• Therefore 𝑉2 𝑥  is positive definite 

only locally in the region 𝑥 < 2.77.



Positive Definite Functions

• Examples 𝑥 ∈ ℝ2 :
• 𝑉1 𝑥 = 𝑥1

2 + 𝑥2
2 • 𝑉2 𝑥 = 𝑥1

2 + 𝑥2
2 − 0.13(𝑥1

4 + 𝑥2
4)



Lyapunov’s Direct Method

ሶ𝑥 = 𝑓 𝑥
𝑥∗ is an Eq. point of 

the system

Stable Asymptotically Stable
Globally Asymptotically 

Stable

Find a Lyapunov function 

𝑉 𝑥  such that :

• 𝑉 𝑥∗ =  0

• 𝑉 𝑥 > 0 

• ሶ𝑉 𝑥 ≤ 0 

Find a Lyapunov function 

𝑉 𝑥  such that:

• 𝑉 𝑥∗ =  0

• 𝑉 𝑥 > 0 

• ሶ𝑉 𝑥 < 0

Find a Lyapunov function 

𝑉 𝑥  such that :

• 𝑉 𝑥∗ =  0

• 𝑉 𝑥 > 0 

• ሶ𝑉 𝑥 < 0 

• 𝑉 𝑥 → ∞ as 𝑥 − 𝑥∗ → ∞ 

ሶ𝑉 𝑥  is negative 

semi-definite

ሶ𝑉 𝑥  is negative 

definite 𝑉 𝑥  is radially 

unbounded



Outline

• Recap last lectures

• Application of Lyapunov’s indirect method

• Lyapunov’s direct method

• La Salle’s invariance principle



Motivation Example: Pendulum

• Consider the Pendulum dynamics with all parameters set to 1 for 
simplicity:

ሶ𝑥1

ሶ𝑥2
=

𝑥2

−𝑥2  − sin 𝑥1
,  𝑥1 = 𝜃, 𝑥2 = ሶ𝜃 

• Consider the Lyapunov function given by the total energy of the 
system:

• 𝑉 𝑥 =
1

2
ሶ𝜃2 + (1 − cos 𝜃)

• ሶ𝑉 𝑥 = ሶ𝜃 ሷ𝜃 + ሶ𝜃sin 𝜃 = ሶ𝜃 − ሶ𝜃  − sin 𝜃 + ሶ𝜃sin 𝜃 = − ሶ𝜃2

Kinetic

 Energy
Potential

 Energy

𝑉(𝑥)  >  0, but not radially unbounded

ሶ𝑉 𝑥 ≤ 0 , therefore we can only 

conclude that the origin is stable but not 

asymptotically stable



Motivation

LaSalle

• In many physical or engineering systems (especially mechanical 
systems with dissipation), we might only show ሶ𝑉 𝑥 ≤ 0 (i.e., 
negative semidefinite). 

• That tells us the system’s “energy-like” quantity never increases, but 
it might stay constant for certain motions. 

• Simply applying Lyapunov’s theorem with negative semidefinite 
ሶ𝑉 𝑥  gives us stability but not necessarily asymptotic stability.

• One solution is to use the invariant set theorem attributed to J.P. 
LaSalle

https://en.wikipedia.org/wiki/Joseph_P._LaSalle
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