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* More on Positive Definiteness

» Geometric interpretation of V (x)
 Application of Lyapunov’s direct method
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Recap: State Space Model

* A nonlinear dynamic system can be represented by a set of
nonlinear differential equations in the form

x=f(x)+gx)u
y = h(x)
which is called the state space model of the dynamic system.

* We are focusing on analyzing the stability of the equilibrium points
x, systems of the form

x = f(x)

Special case: Linear
time-invariant systems

x = Ax + Bu
y=Cx




Recap: Lyapunov's indirect method

* The linearization of x = f(x) around the equilibrium point x, is
given by:
Zz=Az
where z := x —x, € R"™ and A := J((x,) is the Jacobian of f(x)
evaluated at the equilibrium points.

 Stability Conditions:

Is there any 4; with ~ x, is unstable for the
Re(4;,) >0 7 ~ nonlinear system.
Compute .
eig(A) = %—11 1) J| Isthere any 4; with . Lyapunov’s indirect
T ) nts . — 2 . .
with 2, € C Re(1;) =0 method is inconclusive
Do all 1; have . x.is locally asymptotically

Re(4;) < 0? stable for the nonlinear system.




Recap: Lyapunov’s Direct Method

x = f(x)

x* is an Eq. point of
the system
: Globally Asymptotically
Stable Asymptotically Stable Stable
Find a Lyapunov function Find a Lyapunov function Find a Lyapunov function
V(x) such that : V(x) such that: V(x) such that :
c V(x*) =0 e V(x*)=0 e V(x)=0
« V(x)>0 « V(x)>0 ¢« V(x)>0
« V(x)<0 \ « V(x) <0 « V(x)<0
\\ \ \\ * V(x) owas|x—x*|| > oo
\
V(x)is negative  V(x) is positive V(x) is negative \ < radiall
semi-definite definite definite V(x) is radially

unbounded




Recap: Pendulum Case study

* State space model: Equilibrium Points:
x*,l = (0,0) ) x*,Z = (T[, O)

.7.C1 x2
o p— .
(xz) (_szz —C smx1)’ €12 >0




Recap: Pendulum Case study

- State space model: Equilibrium Points:

x*,l = (0,0) ) x*,Z = (T[, O)
X2

% >0
[ J j— .
Xy —CyXx, —CqSinxg )’ 1 C2

 Lyapunov’s indirect method:

. A, = ( ) _ ( 0 1 ) For Al,Re(/ll') < O, VCl,CZ >0
1= Jp(%1) = —c; —Cy ~ x,.1 = (0,0) is locally asymptotically stable.
. L _ 0 1 For Az, Re(/lz) > 0,,VC1, Cy > 0

Az = ]f(x*»Z) N <C1 —CZ) X, o = (m,0) is unstable.




Recap: Pendulum Case study

- State space model: Equilibrium Points:

. X.1=1(0,0), x.,:=(m,0)
X1\ _ X
(552) - (_szz — (1 Sinxl)' c1,¢2 >0

 Lyapunov’s indirect method:

e A, = ( ) _ ( 0 1 ) For Al' Re(/ll) < O, VCl,CZ >0
1= Jpla) = —C —C ~ x,.1 = (0,0) is locally asymptotically stable.

e A ::] (x ):(0 1 ) FOFAZ,RG(AZ)>0,,VC1,C2>O
i A (1 —C X, o = (m,0) is unstable.

 Lyapunov’s direct method:

30 Surtace Plot of Vixy= 0.5

c V(x) = %xzz + ¢4 (1 — cos xy) V(x.1)=0, V(x)>0VxeX/{x 4} \.' I
c V(x)=—cx2<0 V(x) is negative semi-definite \b ‘

~ x, 1 = (0,0) is stable. | I




Recap: Satellite Case study

« State space model: « Equilibrium Points:
* w,, =000
* a'):—]‘l(a)/\]a)) . (1)*”6;:2(1,0,()))
, = (0,9,0)
1 (Cl“’z‘”3> © w0 =(0,0,0)
* Wy | =| C2W3Wwq |, C1,C3 > 0, and Cy < 0 ,
W3 C3W1 W3




Recap: Satellite Case study

« State space model: « Equilibrium Points:
* w,, =000
* a'):—]‘l(a)/\]a)) . (A)*ZC;:EQ,O,()))
, = (0,9,0)
1 (W”wj © w0 =(0,0,0)
* Wy | =| C2W3Wwq |, C1,C3 > 0, and Cy < 0 ,
W3 C3W1 W3

 Lyapunov’s indirect method:

0 0 0 0 0 c¢0
4%=h@MJ=<oo Q Ac=Jf(w.)=( 0 0 0
0 0 0 ;0 0 0
0 O 0 - 0 ¢ 0
Ap=Jr(w.,)={0 0 c0l2=0 Ag=Jf(w.a)=|c @ 0 0
P 0O 0 0

0 30 0 /|2 =9yce>0

13 == _Q\/C1C3 < 0

s~ w.p = (Q,0,0) is unstable.
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* More on Positive Definiteness




Positive definite functions

* A function y: X’ — R is locally positive definite about x, € X If:
P (x)=0

* There exists a neighborhood U c X that includes x, (i.e., x, € U) such that
Y(x) >0V x e U\{x.}

* Y : X — Ris locally positive semi-definite if (x) = 0V x € U\{x.}.
* 1 : X - Ris globally positive definite if (x) > 0V x € X'\ {x.}.

* Y : X —» Ris locally (semi-)definite If IS locally
positive (semi-)definite.



Positive definite functions

* A function y: X’ — R is locally positive definite about x, € X If:
P (x)=0

* There exists a neighborhood U c X that includes x, (i.e., x, € U) such that
Y(x) >0V x e U\{x,.}

* In other words, x, is a strict local minimum of ¥ (x), and the function
Increases in every direction away from x, within U.

 Recall the classic result of calculus:

* If ¢ Is differentiable, and x, is a local minimum, then the gradient must
vanish there i.e., J;,(x,) = 0.

* We call points x, € X a critical zero for the smooth function y: X —
Rif ¥ (x,) = 0and J,(x,) = 0.



Positive Definite Matrices

A real symmetric matrix A € R™*" is called a positive definite matrix if we
have that

x"Ax >0, VxeR"{0}.
« 4 € R"™" s called a positive semi-definite matrix if xT A x > 0.
« A € R"" s called a negative definite matrix if x" 4 x < 0.
« A € R™" is called a negative semi-definite matrix if xT A x < 0.

* Key property:
« A > 0 is positive definite if and only if all its eigenvalues are positive.
« A > 0 is positive semi-definite if and only if all its eigenvalues are non-negative.
« A < 0 Is negative definite if and only if all its eigenvalues are negative.
« A < 0 Is negative definite if and only if all its eigenvalues are non-positive.



Using Taylor Expansion for Positive Definiteness

« Suppose you have a smooth scalar function V: R" - R , and you
want to check whether it's positive definite around x, € R™.

* You can expand V(x) as a Taylor series of order 2:
VG = V) +Jy ) (=2 +5 (= x) THy () (x = x) + ..
where Hy (x,) € R™™™ is called the Hessian matrix with the entry of

2
the ith row and the jth column is (Hy);; = ai_a: : R"™ - R.
Add




Using Taylor Expansion for Positive Definiteness

« Suppose you have a smooth scalar function V: R" - R , and you
want to check whether it's positive definite around x, € R™.

* You can expand V(x) as a Taylor series of order 2:
VG = V) +Jy ) (= x) +5 (= x) "Hy () (x = x) + ..

where Hy (x,) € R™" is called the Hessian matrix with the entry of

2
the ith row and the jth column is (Hy);; = ai-avx- : R"™ - R.
Add

* However, since x, IS a critical zero of V, the function is locally
approximated by

1
V() ~ 5 (e = %) THy () (x = x.)




Using Taylor Expansion for Positive Definiteness

1
V() ~ 5 (= x)THy () (x = )

» Therefore, we have that V(x) is a locally positive definite function if
and only if the Hessian Hy, (x,) is a positive definite matrix, which
can be assessed from its eigenvalues.

 This result is a basic result from what is known as Morse theory.
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» Geometric interpretation of V (x)
 Application of Lyapunov’s direct method
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