SCE 594: Special Topics in Intelligent Automation & Robotics

Lecture 19: Lyapunov's direct method II

- Recap last lectures
- More on Positive Definiteness
- Geometric interpretation of $\dot{V}(x)$
- Application of Lyapunov's direct method

- Recap last lectures
- More on Positive Definiteness
- Geometric interpretation of $\dot{V}(x)$
- Application of Lyapunov's direct method

Recap: State Space Model

 A nonlinear dynamic system can be represented by a set of nonlinear differential equations in the form

$$\dot{x} = f(x) + g(x) u$$
$$y = h(x)$$

which is called the state space model of the dynamic system.

• We are focusing on analyzing the stability of the equilibrium points x_* systems of the form

$$\dot{x} = f(x)$$

Special case: Linear time-invariant systems $\dot{x} = Ax + Bu$

$$x = Ax + Du$$
$$y = C x$$

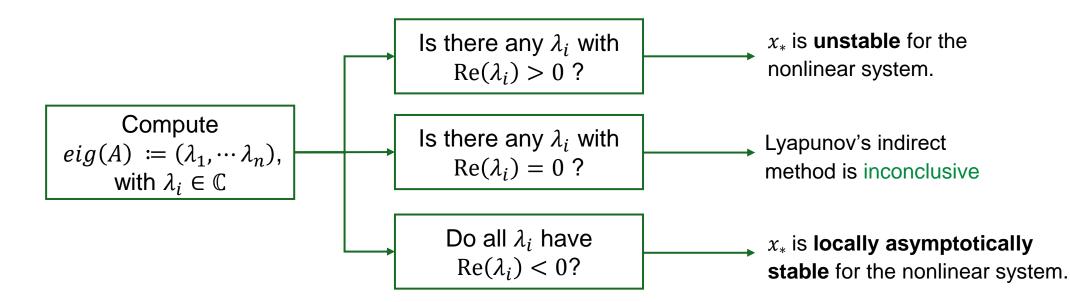
Recap: Lyapunov's indirect method

• The linearization of $\dot{x} = f(x)$ around the equilibrium point x_* is given by:

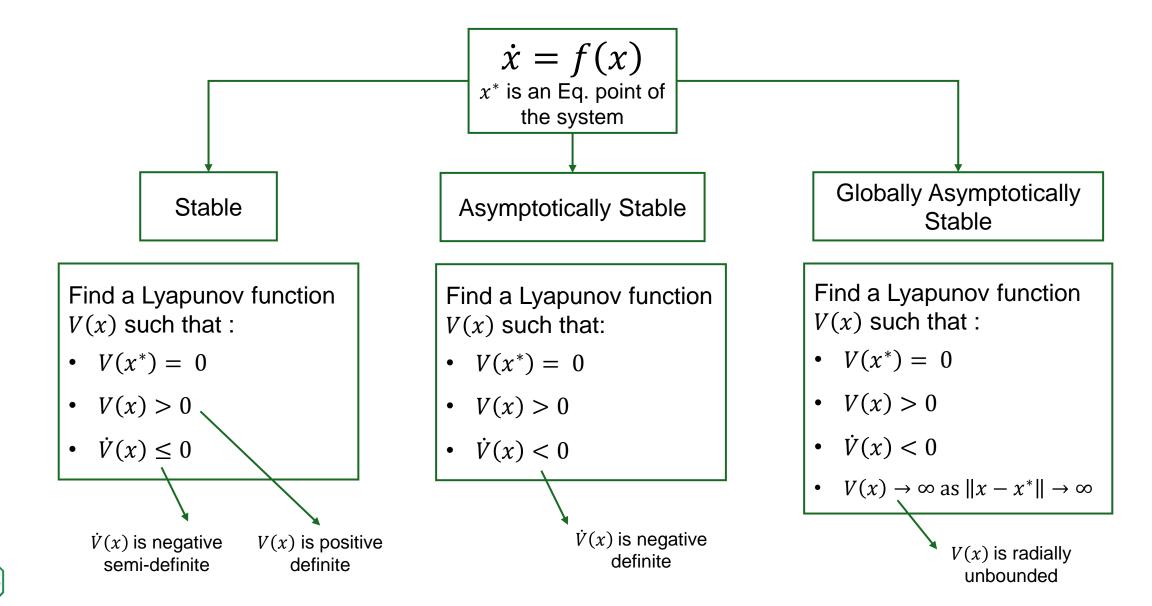
$$\dot{z} = A z$$

where $z \coloneqq x - x_* \in \mathbb{R}^n$ and $A \coloneqq J_f(x_*)$ is the Jacobian of f(x) evaluated at the equilibrium points.

Stability Conditions:



Recap: Lyapunov's Direct Method



Recap: Pendulum Case study

State space model:

$$\bullet \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -c_2 x_2 - c_1 \sin x_1 \end{pmatrix}, \quad c_1, c_2 > 0$$

Equilibrium Points:

$$x_{*,1} \coloneqq (0,0) , \quad x_{*,2} \coloneqq (\pi,0)$$

Recap: Pendulum Case study

• State space model:

Equilibrium Points:

$$x_{*,1} \coloneqq (0,0) , \quad x_{*,2} \coloneqq (\pi,0)$$

•
$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -c_2x_2 - c_1\sin x_1 \end{pmatrix}$$
, $c_1, c_2 > 0$

Lyapunov's indirect method:

•
$$A_1 \coloneqq J_f(x_{*,1}) = \begin{pmatrix} 0 & 1 \\ -c_1 & -c_2 \end{pmatrix}$$

•
$$A_2 \coloneqq J_f(x_{*,2}) = \begin{pmatrix} 0 & 1 \\ c_1 & -c_2 \end{pmatrix}$$

For
$$A_1$$
, $Re(\lambda_i) < 0$, $\forall c_1, c_2 > 0$
 $\therefore x_{*,1} := (0,0)$ is locally asymptotically stable.

For
$$A_2$$
, $Re(\lambda_2) > 0$, , $\forall c_1, c_2 > 0$
 $\therefore x_{*,2} := (\pi, 0)$ is unstable.

Recap: Pendulum Case study

• State space model:

•
$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -c_2 x_2 - c_1 \sin x_1 \end{pmatrix}$$
, $c_1, c_2 > 0$

Equilibrium Points:

$$x_{*,1} \coloneqq (0,0) , \quad x_{*,2} \coloneqq (\pi,0)$$

• Lyapunov's indirect method:

•
$$A_1 := J_f(x_{*,1}) = \begin{pmatrix} 0 & 1 \\ -c_1 & -c_2 \end{pmatrix}$$

•
$$A_2 \coloneqq J_f(x_{*,2}) = \begin{pmatrix} 0 & 1 \\ c_1 & -c_2 \end{pmatrix}$$

For A_1 , $Re(\lambda_i) < 0$, $\forall c_1, c_2 > 0$

 $x_{*,1} \coloneqq (0,0)$ is locally asymptotically stable.

For A_2 , $Re(\lambda_2) > 0$, , $\forall c_1, c_2 > 0$

 $\therefore x_{*,2} \coloneqq (\pi,0)$ is unstable.

Lyapunov's direct method:

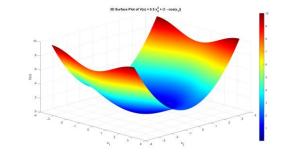
•
$$V(x) = \frac{1}{2}x_2^2 + c_1(1 - \cos x_1)$$

•
$$\dot{V}(x) = -c_2 x_2^2 \le 0$$

$$V(x_{*,1}) = 0, \quad V(x) > 0 \ \forall \ x \in \mathcal{X}/\{x_{*,1}\}$$

 $\dot{V}(x)$ is negative semi-definite

 $\therefore x_{*,1} \coloneqq (0,0)$ is stable.



Recap: Satellite Case study

State space model:

•
$$\dot{\omega} = -J^{-1}(\omega \wedge J\omega)$$

$$\begin{pmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \end{pmatrix} = \begin{pmatrix} c_1 \omega_2 \omega_3 \\ c_2 \omega_3 \omega_1 \\ c_3 \omega_1 \omega_2 \end{pmatrix}, \qquad c_1, c_3 > 0, \text{ and } c_2 < 0$$

• Equilibrium Points:

- $\omega_{*,a} = (0,0,0)$
- $\omega_{*,b} = (\Omega,0,0)$
- $\omega_{*,c} = (0, \Omega, 0)$
- $\omega_{*,d} = (0,0,\Omega)$

Recap: Satellite Case study

State space model:

•
$$\dot{\omega} = -J^{-1}(\omega \wedge J\omega)$$

$$\bullet \begin{pmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \end{pmatrix} = \begin{pmatrix} c_1 \omega_2 \omega_3 \\ c_2 \omega_3 \omega_1 \\ c_3 \omega_1 \omega_2 \end{pmatrix}, \qquad c_1, c_3 > 0, \text{ and } c_2 < 0$$

$$c_1, c_3 > 0$$
, and $c_2 < 0$

Equilibrium Points:

•
$$\omega_{*,a} = (0,0,0)$$

•
$$\omega_{*,b} = (\Omega,0,0)$$

•
$$\omega_{*,c} = (0, \Omega, 0)$$

•
$$\omega_{*,d} = (0,0,\Omega)$$

Lyapunov's indirect method:

$$A_a = J_f(\omega_{*,a}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A_b = J_f(\omega_{*,b}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & c_2 \Omega \\ 0 & c_3 \Omega & 0 \end{pmatrix} \begin{vmatrix} \lambda_1 = 0 \\ \lambda_2 = \Omega \sqrt{c_1 c_3} > 0 \\ \lambda_3 = -\Omega \sqrt{c_1 c_3} < 0 \end{vmatrix}$$

$$A_{c} = J_{f}(\boldsymbol{\omega}_{*,c}) = \begin{pmatrix} 0 & 0 & c_{1}\Omega \\ 0 & 0 & 0 \\ c_{3}\Omega & 0 & 0 \end{pmatrix}$$

$$A_d = J_f(\omega_{*,d}) = \begin{pmatrix} 0 & c_1 \Omega & 0 \\ c_2 \Omega & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- Recap last lectures
- More on Positive Definiteness
- Geometric interpretation of $\dot{V}(x)$
- Application of Lyapunov's direct method

Positive definite functions

- A function $\psi: \mathcal{X} \to \mathbb{R}$ is locally positive definite about $x_* \in \mathcal{X}$ if:
 - $\bullet \ \psi \ (x_*) = 0$
 - There exists a neighborhood $\mathcal{U} \subset \mathcal{X}$ that includes x_* (i.e., $x_* \in \mathcal{U}$) such that $\psi(x) > 0 \ \forall \ x \in \mathcal{U} \setminus \{x_*\}$.
- $\psi: \mathcal{X} \to \mathbb{R}$ is locally positive semi-definite if $\psi(x) \ge 0 \ \forall \ x \in \mathcal{U} \setminus \{x_*\}$.
- $\psi: \mathcal{X} \to \mathbb{R}$ is globally positive definite if $\psi(x) > 0 \ \forall \ x \in \mathcal{X} \setminus \{x_*\}$.
- $\psi: \mathcal{X} \to \mathbb{R}$ is locally negative (semi-)definite if $-\psi(x)$ is locally positive (semi-)definite.

Positive definite functions

- A function $\psi: \mathcal{X} \to \mathbb{R}$ is locally positive definite about $x_* \in \mathcal{X}$ if:
 - $\bullet \ \psi \ (x_*) = 0$
 - There exists a neighborhood $\mathcal{U} \subset \mathcal{X}$ that includes x_* (i.e., $x_* \in \mathcal{U}$) such that $\psi(x) > 0 \ \forall \ x \in \mathcal{U} \setminus \{x_*\}.$
- In other words, x_* is a strict local minimum of $\psi(x)$, and the function increases in every direction away from x_* within \mathcal{U} .
- Recall the classic result of calculus:
 - If ψ is differentiable, and x_* is a local minimum, then the gradient must vanish there i.e., $J_{\psi}(x_*) = 0$.
- We call points $x_* \in \mathcal{X}$ a critical zero for the smooth function $\psi \colon \mathcal{X} \to \mathbb{R}$ if $\psi(x_*) = 0$ and $J_{\psi}(x_*) = 0$.

Positive Definite Matrices

• A real symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called a positive definite matrix if we have that

$$x^{\mathsf{T}} A x > 0$$
, $\forall x \in \mathbb{R}^n \setminus \{0\}$.

- $A \in \mathbb{R}^{n \times n}$ is called a positive semi-definite matrix if $x^T A x \ge 0$.
- $A \in \mathbb{R}^{n \times n}$ is called a negative definite matrix if $x^T A x < 0$.
- $A \in \mathbb{R}^{n \times n}$ is called a negative semi-definite matrix if $x^T A x \leq 0$.
- Key property:
 - A > 0 is positive definite if and only if all its eigenvalues are positive.
 - $A \ge 0$ is positive semi-definite if and only if all its eigenvalues are non-negative.
 - A < 0 is negative definite if and only if all its eigenvalues are negative.
 - $A \leq 0$ is negative definite if and only if all its eigenvalues are non-positive.

Using Taylor Expansion for Positive Definiteness

- Suppose you have a smooth scalar function $V: \mathbb{R}^n \to \mathbb{R}$, and you want to check whether it's positive definite around $x_* \in \mathbb{R}^n$.

• You can expand
$$V(x)$$
 as a Taylor series of order 2:
$$V(x) = V(x_*) + J_V(x_*) (x - x_*) + \frac{1}{2} (x - x_*)^{\mathsf{T}} H_V(x_*) (x - x_*) + \dots$$

where $H_V(x_*) \in \mathbb{R}^{n \times n}$ is called the Hessian matrix with the entry of the *i*th row and the *j*th column is $(H_V)_{ij} \coloneqq \frac{\partial^2 V}{\partial x_i \partial x_i} \colon \mathbb{R}^n \to \mathbb{R}$.

Using Taylor Expansion for Positive Definiteness

- Suppose you have a smooth scalar function $V: \mathbb{R}^n \to \mathbb{R}$, and you want to check whether it's positive definite around $x_* \in \mathbb{R}^n$.

• You can expand
$$V(x)$$
 as a Taylor series of order 2:
$$V(x) = V(x_*) + J_V(x_*) (x - x_*) + \frac{1}{2} (x - x_*)^{\mathsf{T}} H_V(x_*) (x - x_*) + \dots$$

where $H_V(x_*) \in \mathbb{R}^{n \times n}$ is called the Hessian matrix with the entry of the *i*th row and the *j*th column is $(H_V)_{ij} := \frac{\partial^2 V}{\partial x_i \partial x_i} : \mathbb{R}^n \to \mathbb{R}$.

• However, since x_* is a critical zero of V, the function is locally approximated by

$$V(x) \approx \frac{1}{2}(x - x_*)^{\mathsf{T}} H_V(x_*)(x - x_*)$$

Using Taylor Expansion for Positive Definiteness

$$V(x) \approx \frac{1}{2} (x - x_*)^{\mathsf{T}} H_V(x_*) (x - x_*)$$

• Therefore, we have that V(x) is a locally positive definite function if and only if the Hessian $H_V(x_*)$ is a positive definite matrix, which can be assessed from its eigenvalues.

This result is a basic result from what is known as Morse theory.

- Recap last lectures
- More on Positive Definiteness
- Geometric interpretation of $\dot{V}(x)$
- Application of Lyapunov's direct method

