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Recap: State Space Model

• A nonlinear dynamic system can be represented by a set of 
nonlinear differential equations in the form

ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

𝑦 = ℎ 𝑥

which is called the state space model of the dynamic system.

• We are focusing on analyzing the stability of the equilibrium points
𝑥∗ systems of the form

ሶ𝑥 = 𝑓 𝑥

Special case: Linear 

time-invariant systems

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝐶 𝑥 



Recap: Lyapunov’s indirect method

• The linearization of  ሶ𝑥 = 𝑓 𝑥  around the equilibrium point 𝑥∗ is 
given by:

ሶ𝑧 = 𝐴 𝑧

where 𝑧 ≔ 𝑥 − 𝑥∗ ∈ ℝ𝑛 and 𝐴 ≔ 𝐽𝑓 𝑥∗  is the Jacobian of 𝑓 𝑥  
evaluated at the equilibrium points.

• Stability Conditions:

Compute 

 𝑒𝑖𝑔 𝐴  ≔ 𝜆1, ⋯ 𝜆𝑛 , 

with 𝜆𝑖 ∈ ℂ

Do all 𝜆𝑖 have 

Re 𝜆𝑖 < 0? 

Is there any 𝜆𝑖 with 

Re 𝜆𝑖 > 0 ?

Is there any 𝜆𝑖 with 

Re 𝜆𝑖 = 0 ?

𝑥∗ is locally asymptotically 

stable for the nonlinear system.

𝑥∗ is unstable for the 

nonlinear system.

Lyapunov’s indirect 

method is inconclusive



Recap: Lyapunov’s Direct Method

ሶ𝑥 = 𝑓 𝑥
𝑥∗ is an Eq. point of 

the system

Stable Asymptotically Stable
Globally Asymptotically 

Stable

Find a Lyapunov function 

𝑉 𝑥  such that :

• 𝑉 𝑥∗ =  0

• 𝑉 𝑥 > 0 

• ሶ𝑉 𝑥 ≤ 0 

Find a Lyapunov function 

𝑉 𝑥  such that:

• 𝑉 𝑥∗ =  0

• 𝑉 𝑥 > 0 

• ሶ𝑉 𝑥 < 0

Find a Lyapunov function 

𝑉 𝑥  such that :

• 𝑉 𝑥∗ =  0

• 𝑉 𝑥 > 0 

• ሶ𝑉 𝑥 < 0 

• 𝑉 𝑥 → ∞ as 𝑥 − 𝑥∗ → ∞ 

ሶ𝑉 𝑥  is negative 

semi-definite

ሶ𝑉 𝑥  is negative 

definite 𝑉 𝑥  is radially 

unbounded

𝑉 𝑥  is positive 

definite



Recap: Pendulum Case study

• State space model:

•
ሶ𝑥1

ሶ𝑥2
=

𝑥2

−𝑐2𝑥2  − 𝑐1 sin 𝑥1
,  𝑐1, 𝑐2 > 0

Equilibrium Points:

 𝑥∗,1 ≔ 0,0  ,    𝑥∗,2 ≔ 𝜋, 0  



Recap: Pendulum Case study

• State space model:

•
ሶ𝑥1

ሶ𝑥2
=

𝑥2

−𝑐2𝑥2  − 𝑐1 sin 𝑥1
,  𝑐1, 𝑐2 > 0

• Lyapunov’s indirect method:

• 𝐴1 ≔ 𝐽𝑓 𝑥∗,1 =
0 1

−𝑐1 −𝑐2
               

• 𝐴2 ≔ 𝐽𝑓 𝑥∗,2 =
0 1
𝑐1 −𝑐2

Equilibrium Points:

 𝑥∗,1 ≔ 0,0  ,    𝑥∗,2 ≔ 𝜋, 0  

For A1, Re 𝜆𝑖 < 0, ∀𝑐1, 𝑐2 > 0
∴ 𝑥∗,1 ≔ 0,0  is locally asymptotically stable.

For A2, Re 𝜆2 > 0, , ∀𝑐1, 𝑐2 > 0
∴ 𝑥∗,2 ≔ 𝜋, 0  is unstable.



Recap: Pendulum Case study

• State space model:

•
ሶ𝑥1

ሶ𝑥2
=

𝑥2

−𝑐2𝑥2  − 𝑐1 sin 𝑥1
,  𝑐1, 𝑐2 > 0

• Lyapunov’s indirect method:

• 𝐴1 ≔ 𝐽𝑓 𝑥∗,1 =
0 1

−𝑐1 −𝑐2
               

• 𝐴2 ≔ 𝐽𝑓 𝑥∗,2 =
0 1
𝑐1 −𝑐2

• Lyapunov’s direct method:

• 𝑉 𝑥 =
1

2
𝑥2

2 + 𝑐1(1 − cos 𝑥1)

• ሶ𝑉 𝑥 = −𝑐2𝑥2
2 ≤ 0

Equilibrium Points:

 𝑥∗,1 ≔ 0,0  ,    𝑥∗,2 ≔ 𝜋, 0  

For A1, Re 𝜆𝑖 < 0, ∀𝑐1, 𝑐2 > 0
∴ 𝑥∗,1 ≔ 0,0  is locally asymptotically stable.

For A2, Re 𝜆2 > 0, , ∀𝑐1, 𝑐2 > 0
∴ 𝑥∗,2 ≔ 𝜋, 0  is unstable.

𝑉 𝑥∗,1 = 0,      𝑉 𝑥 > 0 ∀ 𝑥 ∈ 𝒳/{𝑥∗,1}

ሶ𝑉 𝑥  is negative semi-definite 

∴ 𝑥∗,1 ≔ 0,0  is stable.



Recap: Satellite Case study

• State space model:

• ሶ𝜔 = −𝐽−1 𝜔 ∧ 𝐽𝜔

•  
ሶ𝜔1

ሶ𝜔2

ሶ𝜔3

=

𝑐1𝜔2𝜔3

𝑐2𝜔3𝜔1

𝑐3𝜔1𝜔2

 ,  𝑐1, 𝑐3 > 0, and 𝑐2 < 0

• Equilibrium Points:

• 𝜔∗,𝑎 = 0,0,0

• 𝜔∗,𝑏 = Ω, 0, 0  

• 𝜔∗,𝑐 = 0, Ω, 0

• 𝜔∗,𝑑 = 0, 0, Ω



Recap: Satellite Case study

• State space model:

• ሶ𝜔 = −𝐽−1 𝜔 ∧ 𝐽𝜔

•  

• Lyapunov’s indirect method:

ሶ𝜔1

ሶ𝜔2

ሶ𝜔3

=

𝑐1𝜔2𝜔3

𝑐2𝜔3𝜔1

𝑐3𝜔1𝜔2

 ,  𝑐1, 𝑐3 > 0, and 𝑐2 < 0

• Equilibrium Points:

• 𝜔∗,𝑎 = 0,0,0

• 𝜔∗,𝑏 = Ω, 0, 0  

• 𝜔∗,𝑐 = 0, Ω, 0

• 𝜔∗,𝑑 = 0, 0, Ω

𝐴𝑎 = 𝐽𝑓 𝜔∗,𝑎 =  
0 0 0
0 0 0
0 0 0

𝐴𝑏 = 𝐽𝑓 𝜔∗,𝑏 =  
0 0 0
0 0 𝑐2Ω
0 𝑐3Ω 0

𝐴𝑐 = 𝐽𝑓 𝜔∗,𝑐 =  
0 0 𝑐1Ω
0 0 0

𝑐3Ω 0 0

𝐴𝑑 = 𝐽𝑓 𝜔∗,𝑑 =  
0 𝑐1Ω 0

𝑐2Ω 0 0
0 0 0

𝜆1 = 0 
𝜆2 = Ω 𝑐1𝑐3 > 0 
𝜆3 = −Ω 𝑐1𝑐3 < 0 

∴ 𝜔∗,𝑏 = Ω, 0, 0  is unstable.
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Positive definite functions

• A function 𝜓: 𝒳 → ℝ is locally positive definite about 𝑥∗ ∈ 𝒳 if:
• 𝜓 𝑥∗ = 0

• There exists a neighborhood 𝒰 ⊂ 𝒳 that includes 𝑥∗ (i.e., 𝑥∗ ∈ 𝒰) such that 
𝜓 𝑥 > 0 ∀ 𝑥 ∈ 𝒰\ 𝑥∗ .

• 𝜓 ∶ 𝒳 → ℝ is locally positive semi-definite if 𝜓 𝑥 ≥ 0 ∀ 𝑥 ∈ 𝒰\ 𝑥∗ .

• 𝜓 ∶ 𝒳 → ℝ is globally positive definite if 𝜓 𝑥 > 0 ∀ 𝑥 ∈ 𝒳\ 𝑥∗ .

• 𝜓 ∶ 𝒳 → ℝ is locally negative (semi-)definite if −𝜓 𝑥  is locally 
positive (semi-)definite.



Positive definite functions

• A function 𝜓: 𝒳 → ℝ is locally positive definite about 𝑥∗ ∈ 𝒳 if:
• 𝜓 𝑥∗ = 0

• There exists a neighborhood 𝒰 ⊂ 𝒳 that includes 𝑥∗ (i.e., 𝑥∗ ∈ 𝒰) such that 
𝜓 𝑥 > 0 ∀ 𝑥 ∈ 𝒰\ 𝑥∗ .

• In other words, 𝑥∗ ​ is a strict local minimum of 𝜓 𝑥 , and the function 
increases in every direction away from 𝑥∗ ​ within 𝒰.

• Recall the classic result of calculus:
• If 𝜓 is differentiable, and 𝑥∗ is a local minimum, then the gradient must 

vanish there i.e., 𝐽𝜓 𝑥∗ = 0.

• We call points 𝑥∗ ∈ 𝒳 a critical zero for the smooth function 𝜓: 𝒳 →
ℝ if 𝜓 𝑥∗ = 0 and 𝐽𝜓 𝑥∗ = 0.



Positive Definite Matrices

• A real symmetric matrix 𝐴 ∈ ℝ𝑛×𝑛 is called a positive definite matrix if we 
have that

𝑥⊤ 𝐴 𝑥 > 0 ,  ∀𝑥 ∈ ℝ𝑛\{0}.

• 𝐴 ∈ ℝ𝑛×𝑛 is called a positive semi-definite matrix if 𝑥⊤ 𝐴 𝑥 ≥ 0.

• 𝐴 ∈ ℝ𝑛×𝑛 is called a negative definite matrix if 𝑥⊤ 𝐴 𝑥 < 0.

• 𝐴 ∈ ℝ𝑛×𝑛 is called a negative semi-definite matrix if 𝑥⊤ 𝐴 𝑥 ≤ 0.

• Key property: 
• 𝐴 ≻ 0 is positive definite if and only if all its eigenvalues are positive.

• 𝐴 ≽ 0 is positive semi-definite if and only if all its eigenvalues are non-negative.

• 𝐴 ≺ 0 is negative definite if and only if all its eigenvalues are negative.

• 𝐴 ≼ 0 is negative definite if and only if all its eigenvalues are non-positive.



Using Taylor Expansion for Positive Definiteness

• Suppose you have a smooth scalar function 𝑉: ℝ𝑛 → ℝ , and you 
want to check whether it's positive definite around 𝑥∗ ∈ ℝ𝑛.

• You can expand V(𝑥) as a Taylor series of order 2:

𝑉 𝑥 = 𝑉 𝑥∗ + 𝐽𝑉 𝑥∗ 𝑥 − 𝑥∗ +
1

2
𝑥 − 𝑥∗

⊤𝐻𝑉 𝑥∗ 𝑥 − 𝑥∗ +  …

where 𝐻𝑉 𝑥∗ ∈ ℝ𝑛×𝑛 is called the Hessian matrix with the entry of 

the 𝑖th row and the 𝑗th column is 𝐻𝑉 𝑖𝑗 ≔
𝜕2𝑉

𝜕𝑥𝑖𝜕𝑥𝑗
: ℝ𝑛 → ℝ.



Using Taylor Expansion for Positive Definiteness

• Suppose you have a smooth scalar function 𝑉: ℝ𝑛 → ℝ , and you 
want to check whether it's positive definite around 𝑥∗ ∈ ℝ𝑛.

• You can expand V(𝑥) as a Taylor series of order 2:

𝑉 𝑥 = 𝑉 𝑥∗ + 𝐽𝑉 𝑥∗ 𝑥 − 𝑥∗ +
1

2
𝑥 − 𝑥∗

⊤𝐻𝑉 𝑥∗ 𝑥 − 𝑥∗ +  …

where 𝐻𝑉 𝑥∗ ∈ ℝ𝑛×𝑛 is called the Hessian matrix with the entry of 

the 𝑖th row and the 𝑗th column is 𝐻𝑉 𝑖𝑗 ≔
𝜕2𝑉

𝜕𝑥𝑖𝜕𝑥𝑗
: ℝ𝑛 → ℝ.

• However, since 𝑥∗ is a critical zero of 𝑉, the function is locally 
approximated by

𝑉 𝑥 ≈
1

2
𝑥 − 𝑥∗

⊤𝐻𝑉 𝑥∗ 𝑥 − 𝑥∗



Using Taylor Expansion for Positive Definiteness

• Therefore, we have that 𝑉 𝑥  is a locally positive definite function if 
and only if the Hessian 𝐻𝑉 𝑥∗  is a positive definite matrix, which 
can be assessed from its eigenvalues.

• This result is a basic result from what is known as Morse theory.

𝑉 𝑥 ≈
1

2
𝑥 − 𝑥∗

⊤𝐻𝑉 𝑥∗ 𝑥 − 𝑥∗
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