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Recap: State Space Model

• A nonlinear dynamic system can be represented by a set of 
nonlinear differential equations in the form

ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢

𝑦 = ℎ 𝑥

which is called the state space model of the dynamic system.

• We are focusing on analyzing the stability of the equilibrium points
𝑥∗ systems of the form

ሶ𝑥 = 𝑓 𝑥

Special case: Linear 

time-invariant systems

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝐶 𝑥 



Recap: Lyapunov’s Direct Method

ሶ𝑥 = 𝑓 𝑥
𝑥∗ is an Eq. point of 

the system

Stable Asymptotically Stable
Globally Asymptotically 

Stable

Find a Lyapunov function 

𝑉 𝑥  such that :

• 𝑉 𝑥∗ =  0

• 𝑉 𝑥 > 0 

• ሶ𝑉 𝑥 ≤ 0 

Find a Lyapunov function 

𝑉 𝑥  such that:

• 𝑉 𝑥∗ =  0

• 𝑉 𝑥 > 0 

• ሶ𝑉 𝑥 < 0

Find a Lyapunov function 

𝑉 𝑥  such that :

• 𝑉 𝑥∗ =  0

• 𝑉 𝑥 > 0 

• ሶ𝑉 𝑥 < 0 

• 𝑉 𝑥 → ∞ as 𝑥 − 𝑥∗ → ∞ 

ሶ𝑉 𝑥  is negative 

semi-definite

ሶ𝑉 𝑥  is negative 

definite 𝑉 𝑥  is radially 

unbounded

𝑉 𝑥  is positive 

definite



Recap: Local Definiteness

• Therefore, we have that 𝑉 𝑥  is a locally positive definite function if 
and only if the Hessian 𝐻𝑉 𝑥∗  is a positive definite matrix, which 
can be assessed from its eigenvalues.

• This result is a basic result from what is known as Morse theory.

𝑉 𝑥 ≈
1

2
𝑥 − 𝑥∗

⊤𝐻𝑉 𝑥∗ 𝑥 − 𝑥∗



Recap: Computing ሶ𝑉(𝑥)

• We have in general for 𝑥 ∈ 𝒳 that ሶ𝑥 ∈ 𝑇𝑥𝒳, with ሶ𝑥 = 𝑓 𝑥

• Therefore, we have

ሶ𝑉 𝑥 = ℒ𝜎𝑓
𝑉 𝑥 = 𝑑𝑉(𝑥)|𝑓(𝑥) = 𝑑𝑉(𝑥)| ሶ𝑥  

where 𝑑𝑉(𝑥) ∈ 𝑇𝑥
∗𝒳 and 

⋅ | ⋅ ∶ 𝑇𝑥
∗𝒳 × 𝑇𝑥𝒳 → ℝ 

is called the duality product on tangent spaces of 𝒳.

𝑑𝑉 is called the differential of the scalar function 𝑉 



Recap: Computing ሶ𝑉(𝑥)

• For the case 𝒳 = ℝ𝑛 we have that
ሶ𝑉 𝑥 = 𝑑𝑉(𝑥)| ሶ𝑥  = 𝑑𝑉 𝑥 ሶ𝑥

where 𝑑𝑉 𝑥 ∈ ℝ𝑛 ∗ is given by

𝑑𝑉 𝑥 =
𝜕𝑉

𝜕𝑥1
(𝑥), ⋯ ,

𝜕𝑉

𝜕𝑥𝑛
(𝑥) ∈ ℝ1×𝑛



Recap: Computing ሶ𝑉(𝑥)

• For the case 𝒳 = ℝ𝑛 we have that
ሶ𝑉 𝑥 = 𝑑𝑉(𝑥)| ሶ𝑥  = 𝑑𝑉 𝑥 ሶ𝑥

where 𝑑𝑉 𝑥 ∈ ℝ𝑛 ∗ is given by

𝑑𝑉 𝑥 =
𝜕𝑉

𝜕𝑥1
(𝑥), ⋯ ,

𝜕𝑉

𝜕𝑥𝑛
(𝑥) ∈ ℝ1×𝑛

• It is more common to write the above using the gradient vector

∇𝑉 𝑥 =

𝜕𝑉

𝜕𝑥1
(𝑥)

⋮
𝜕𝑉

𝜕𝑥𝑛
(𝑥)

∈ ℝ𝑛 

The differential and gradient are dual to each other

𝑑𝑉 𝑥 = ∇𝑉⊤ 𝑥



Outline

• Recap last lectures

• La Salle’s Invariance Principle

• PD Control of a Point Mass on ℝ3

• Energy balancing formulation



Introduction

• LaSalle’s Invariance Principle is a fundamental result in the stability 
analysis of dynamical systems. 

• It generalizes Lyapunov’s direct method to handle the case where a 
Lyapunov-like function’s time derivative ሶ𝑉(𝑥) is only negative semi-
definite rather than strictly negative.



Invariant set

• Before discussing LaSalle’s Invariance principle, we introduce the 
concept of an invariant set.

• Definition: 
• A set 𝑀 is an invariant set for a dynamic system if every system trajectory 

which starts from a point in 𝑀 remains in 𝑀 for all future time.

• Examples of invariant sets:
• Equilibrium points

• Domain of attraction of an equilibrium point

• The whole state space



La Salle’s Invariance Principle

• Let 𝑥∗ ∈ 𝒳 be an equilibrium point of the dynamical system
ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 .

Assume there exists a smooth Lyapunov function 𝑉: 𝒳 → ℝ such that in 
some neighborhood Ω ⊂ 𝒳 of 𝑥∗, we have that

• 𝑉 is positive definite

• ሶ𝑉 is negative semi-definite

• Let 𝑅 ≔ 𝑥 ∈ Ω ሶ𝑉 𝑥 = 0} ⊂ Ω and let 𝑀 ⊂ 𝑅 be the largest invariant set in it.
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ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 .

Assume there exists a smooth Lyapunov function 𝑉: 𝒳 → ℝ such that in 
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locally asymptotically stable with its domain of attraction defined by

Ω𝑙  ≔ 𝑥 ∈ Ω 𝑉 𝑥 < 𝑙} ⊂ Ω. 



La Salle’s Invariance Principle

• Let 𝑥∗ ∈ 𝒳 be an equilibrium point of the dynamical system
ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 .

Assume there exists a smooth Lyapunov function 𝑉: 𝒳 → ℝ such that in 
some neighborhood Ω ⊂ 𝒳 of 𝑥∗, we have that

• 𝑉 is positive definite

• ሶ𝑉 is negative semi-definite
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• If 𝑀 contains only the equilibrium point (i.e., 𝑀 = {𝑥∗}), then 𝑥∗ is 
locally asymptotically stable with its domain of attraction defined by

Ω𝑙  ≔ 𝑥 ∈ Ω 𝑉 𝑥 < 𝑙} ⊂ Ω. 

This result is properly called Barbashin-Krasovskii-LaSalle principle !



Recap: Pendulum Case study

• State space model:

•
ሶ𝑥1

ሶ𝑥2
=

𝑥2

−𝑐2𝑥2  − 𝑐1 sin 𝑥1
,  𝑐1, 𝑐2 > 0

• Lyapunov’s direct method:

• 𝑉 𝑥 =
1

2
𝑥2

2 + 𝑐1(1 − cos 𝑥1)

• ሶ𝑉 𝑥 = −𝑐2𝑥2
2 ≤ 0

Equilibrium Points:

 𝑥∗,1 ≔ 0,0  ,    𝑥∗,2 ≔ 𝜋, 0  

𝑉 𝑥∗,1 = 0,      𝑉 𝑥 > 0 ∀ 𝑥 ∈ 𝒳/{𝑥∗,1}

ሶ𝑉 𝑥  is negative semi-definite ∴ 𝑥∗,1 ≔ 0,0  is stable according 

to Lyapunov’s direct method.
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• 𝑅 = (𝑥1, 𝑥2) ∈ 𝒳 𝑥2 = 0} 

3. Define the points that form the invariant set in 𝑅

• i.e., points that have 𝑥2 equal to zero

• ሶ𝑥2 = 0 = 𝑐2𝑥2 + 𝑐1 sin 𝑥1  ⟹ sin 𝑥1 = 0

• Thus, the invariant set 𝑀 is given by 𝑀 = {𝑥∗,1, 𝑥∗,2}

Equilibrium Points:

 𝑥∗,1 ≔ 0,0  ,    𝑥∗,2 ≔ 𝜋, 0  

𝑉 𝑥 =
1

2
𝑥2
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Recap: Pendulum Case study

• Further analysis:

1. Start with 𝛺 =  𝒳

2. Define the set 𝑅 ≔ 𝑥 ∈ 𝛺 ሶ𝑉 𝑥 = 0}

• 𝑅 = (𝑥1, 𝑥2) ∈ 𝒳 𝑥2 = 0} 

3. Define the points that form the invariant set in 𝑅

• i.e., points that have 𝑥2 equal to zero

• ሶ𝑥2 = 0 = 𝑐2𝑥2 + 𝑐1 sin 𝑥1  ⟹ sin 𝑥1 = 0

• Thus, the invariant set 𝑀 is given by 𝑀 = 𝑥∗,1, 𝑥∗,2

4. Compute level sets of 𝑉 𝑥

• 𝑉 𝑥∗,1 =
1

2
0 2 + 𝑐1(1 − cos 0) = 0

• 𝑉 𝑥∗,2 =
1

2
0 2 + 𝑐1(1 − cos 𝜋) = 2 𝑐1 

Equilibrium Points:

 𝑥∗,1 ≔ 0,0  ,    𝑥∗,2 ≔ 𝜋, 0  

𝑉 𝑥 =
1

2
𝑥2

2 + 𝑐1(1 − cos 𝑥1)   

ሶ𝑉 𝑥 = −𝑐2𝑥2
2 ≤ 0



Recap: Pendulum Case study

• Further analysis:

5. If we consider only the region 

• 𝛺 = 𝛺2𝑐1
= 𝑥 ∈ 𝒳  𝑉 𝑥 < 2 𝑐1}

• Refine 𝑅 = (𝑥1, 𝑥2) ∈ 𝛺2𝑐1
 𝑥2 = 0} 

• The largest invariant set in 𝑅 ⊂ 𝛺2𝑐1
 becomes 𝑀 = {𝑥∗,1}

• Therefore, using La Salle’s Invariance Principle, every solution originating in the region 

𝛺2𝑐1
will tend to {𝑥∗,1} as 𝑡 → ∞. 

• Therefore, 𝑥∗,1 ≔ 0,0  is locally asymptotically stable.

Equilibrium Points:

 𝑥∗,1 ≔ 0,0  ,    𝑥∗,2 ≔ 𝜋, 0  

𝑉 𝑥 =
1

2
𝑥2

2 + 𝑐1(1 − cos 𝑥1)   

ሶ𝑉 𝑥 = −𝑐2𝑥2
2 ≤ 0



Summary

• Lyapunov’s direct method:
•  If you have ሶ𝑉 𝑥 < 0 (negative definite), you can conclude asymptotic 

stability of that equilibrium.

• LaSalle’s Invariance Principle: 
• Works with ሶ𝑉 𝑥 ≤ 0 (negative semi-definite). 

• This weaker condition only implies that the trajectory stays in or approaches 
the set 𝑅 where ሶ𝑉 𝑥 . 

• You then must check what the motion does within 𝑅 to conclude asymptotic 
convergence.
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PD Control of Point Mass

• To provide some intuition, let’s start in a simple Euclidean space ℝ𝑛.

• The governing equations of a point mass (with no gravity) are:

• ሶ𝜉 = 𝑣,  ሶ𝑣 =
1

𝑚
𝑢

where 𝜉, 𝑣, 𝑢 ∈ ℝ3 denote the position, velocity and control forces.
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• 𝑥 = 𝜉, 𝑝 = 𝜉, 𝑚𝑣 ∈ ℝ3 × ℝ3

•
ሶ𝜉
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𝑣
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0
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with 𝑣 =
𝑝

𝑚
.



PD Control of Point Mass

• To provide some intuition, let’s start in a simple Euclidean space ℝ𝑛.

• The governing equations of a point mass (with no gravity) are:

• ሶ𝜉 = 𝑣,  ሶ𝑣 =
1

𝑚
𝑢

where 𝜉, 𝑣, 𝑢 ∈ ℝ3 denote the position, velocity and control forces.

• We can rewrite it as the state space model
• 𝑥 = 𝜉, 𝑝 = 𝜉, 𝑚𝑣 ∈ ℝ3 × ℝ3

•
ሶ𝜉
ሶ𝑝

=
𝑣
0

+
0
𝐼3

𝑢 ⇒ ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑢

with 𝑣 =
𝑝

𝑚
.

Note that the total energy of the system is given by

𝐻 𝑝 =
1

2𝑚
𝑝⊤𝑝 =

1

2
 𝑚𝑣⊤𝑣 



PD Control of Point Mass

• Our control objective is to stabilize the system at the desired state
𝑥𝑑 = 𝜉𝑑 , 0

• A classical proportional-derivative (PD) controller can often be 
written as

• 𝑒𝜉 ≔ 𝜉 − 𝜉𝑑 ∈ ℝ3

• 𝑢 = −𝐾𝑝 𝑒𝜉  − 𝐾𝑑 ሶ𝑒𝜉

      = −𝐾𝑝 (𝜉 − 𝜉𝑑) − 𝐾𝑑𝑣 ⇒ 𝑢 = 𝛾(𝑥)

where 𝐾𝑝 ​and 𝐾𝑑 ​ are positive-definite gain matrices



PD Control of Point Mass

• Closed loop system can be written as

ሶ𝜉
ሶ𝑝

=
𝑣

−𝐾𝑝 (𝜉 − 𝜉𝑑) − 𝐾𝑑𝑣  ⇒ ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝛾(𝑥) 

We will show later the stability of this 

system using Lyapunov’s direct method



Moving to a “Geometric” Setting

• It is not straightforward to extend such PD controller to a non-
Euclidean space.

• For example, for the satellite problem we have that 

𝑥 = 𝑅, 𝜔 ∈ 𝑆𝑂 3 × ℝ3 

• If we wish to stabilize the system at the desired state 𝑥𝑑 = 𝑅𝑑 , 0 , 
one cannot simply compute

𝑢 = −𝐾𝑝 𝑒𝑅  − 𝐾𝑑 ሶ𝑒𝑅

with 𝑒𝑅 = 𝑅 − 𝑅𝑑 ∉ 𝑆𝑂(3) and ሶ𝑒𝑅 = ሶ𝑅 ∈ 𝑇𝑅  𝑆𝑂 3  to compute the 
control torques 𝑢 ∈ ℝ3 ∗.



Outline

• Recap last lectures

• La Salle’s Invariance Principle

• PD Control of a Point Mass on ℝ3

• Energy balancing formulation



Reformulating PD Control on ℝ3 

• Our starting point to develop a geometric PD controller is to express 
the proportional term as the gradient of some potential function.

• For the PD controller 

𝑢 = 𝑢𝑝 + 𝑢𝑑 = −𝐾𝑝 𝑒𝜉  − 𝐾𝑑 ሶ𝑒𝜉    

we can view the proportional part as 
𝑢𝑝 = −∇Ψ 𝜉 = −𝐾𝑝 𝑒𝜉

if we pick 

Ψ 𝜉 ≔
1

2
𝜉 − 𝜉𝑑

⊤𝐾𝑝(𝜉 − 𝜉𝑑)

which is a (global) positive definite function of 𝜉 ∈ ℝ3.

Recall: 

∇Ψ⊤ 𝑒𝜉 = 𝑑Ψ(𝑒𝜉)



Reformulating PD Control on ℝ3 

• Such interpretation allows us to perform Lyapunov analysis of the 
closed loop system easily.

• We can choose

 𝑉 𝑥 = Ψ 𝜉 + 𝐻 𝑝  

=
1

2
𝜉 − 𝜉𝑑

⊤𝐾𝑝(𝜉 − 𝜉𝑑) +
1

2𝑚
𝑝⊤𝑝 

Closed loop system
ሶ𝜉
ሶ𝑝

=
𝑣

−∇Ψ 𝜉 + 𝑢𝑑
 



Reformulating PD Control on ℝ3 

• Such interpretation allows us to perform Lyapunov analysis of the 
closed loop system easily.

• We can choose

                     𝑉 𝑥 = Ψ 𝜉 + 𝐻 𝑝  

=
1

2
𝜉 − 𝜉𝑑

⊤𝐾𝑝(𝜉 − 𝜉𝑑) +
1

2𝑚
𝑝⊤𝑝 

• We have that 𝑉 𝑥𝑑 = 𝑉 𝜉𝑑 , 0 = 0, and its Hessian given by

𝐻𝑉 𝑥𝑑 =
𝐾𝑝 03×3

03×3
1

𝑚
𝐼3

≻ 0 , 

• Therefore, 𝑉 𝑥  is globally positive definite.
Closed loop system

ሶ𝜉
ሶ𝑝

=
𝑣

−∇Ψ 𝜉 + 𝑢𝑑
 



Reformulating PD Control on ℝ3 

• Lyapunov function

𝑉 𝑥 = Ψ 𝜉 + 𝐻 𝑝  

• The time derivative ሶ𝑉 𝑥  along trajectories of the closed loop 
system can be written as

ሶ𝑉 𝑥 = 𝑑𝑉 𝑥  | ሶ𝑥 ℝ6

        = 𝑑Ψ 𝜉 | ሶ𝜉
ℝ3 + 𝑑H 𝑝 | ሶ𝑝 ℝ3

        = ሶ𝜉⊤∇Ψ 𝜉 + ∇H⊤ 𝑝  ሶ𝑝

        = 𝑣⊤ ∇Ψ 𝜉 + 𝑣⊤ [−∇Ψ 𝜉 + 𝑢𝑑 ]  

        = 𝑣⊤𝑢𝑑 

Closed loop system
ሶ𝜉
ሶ𝑝

=
𝑣

−∇Ψ 𝜉 + 𝑢𝑑
 



Reformulating PD Control on ℝ3 

• Lyapunov function

𝑉 𝑥 = Ψ 𝜉 + 𝐻 𝑝  

• If we choose 𝑢𝑑 = −𝐾𝑑𝑣, we have hat 

ሶ𝑉 𝑥 = 𝑣⊤𝑢𝑑 = −𝑣⊤𝐾𝑑𝑣 ≤ 0 

• Using La Salle’s invariance principle, it follows that 𝑥𝑑 = 𝜉𝑑 , 0  is a 
globally asymptotically stable equilibrium point of the closed loop 
system.

Closed loop system
ሶ𝜉
ሶ𝑝

=
𝑣

−∇Ψ 𝜉 + 𝑢𝑑
 



Energy-balancing interpretation of PD Control on ℝ3 

• The PD controller
𝑢 = 𝑢𝑝 + 𝑢𝑑

can be interpreted as a sum of an energy-shaping term 𝑢𝑝 and a 
damping injection term 𝑢𝑑.

• For a chosen locally positive definite function Ψ 𝜉  designed such 
that 𝜉𝑑 is a minimum, one has that  𝑢𝑝 = −∇Ψ 𝜉  which yields  

ሶ𝑉 𝑥 = 𝑣⊤𝑢𝑑 .
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can be interpreted as a sum of an energy-shaping term 𝑢𝑝 and a 
damping injection term 𝑢𝑑.

• For a chosen locally positive definite function Ψ 𝜉  designed such 
that 𝜉𝑑 is a minimum, one has that  𝑢𝑝 = −∇Ψ 𝜉  which yields  

ሶ𝑉 𝑥 = 𝑣⊤𝑢𝑑 .

• Choosing 𝑢𝑑 = 𝛾(𝑣) to inject damping such that ሶ𝑉 𝑥 ≤ 0, one has 
with La Salle’s invariance principle that 𝑥𝑑 = 𝜉𝑑 , 0  is locally 
asymptotically stable.



Energy-balancing interpretation of PD Control on ℝ3 

• The PD controller
𝑢 = 𝑢𝑝 + 𝑢𝑑

can be interpreted as a sum of an energy-shaping term 𝑢𝑝 and a 
damping injection term 𝑢𝑑.

• For a chosen locally positive definite function Ψ 𝜉  designed such 
that 𝜉𝑑 is a minimum, one has that  𝑢𝑝 = −∇Ψ 𝜉  which yields  

ሶ𝑉 𝑥 = 𝑣⊤𝑢𝑑 .

• Choosing 𝑢𝑑 = 𝛾(𝑣) to inject damping such that ሶ𝑉 𝑥 ≤ 0, one has 
with La Salle’s invariance principle that 𝑥𝑑 = 𝜉𝑑 , 0  is locally 
asymptotically stable.

• If Ψ 𝜉  has 𝜉𝑑 to be a global minimum, then 𝑥𝑑 = 𝜉𝑑 , 0  is globally 
asymptotically stable.
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