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 PD Control of a Point Mass on R3
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Recap: State Space Model

* A nonlinear dynamic system can be represented by a set of
nonlinear differential equations in the form

x=f(x)+gx)u
y = h(x)
which is called the state space model of the dynamic system.

* We are focusing on analyzing the stability of the equilibrium points
x, systems of the form

x = f(x)

Special case: Linear
time-invariant systems

x = Ax + Bu
y=Cx




Recap: Lyapunov’s Direct Method

x = f(x)

x* is an Eq. point of
the system
: Globally Asymptotically
Stable Asymptotically Stable Stable
Find a Lyapunov function Find a Lyapunov function Find a Lyapunov function
V(x) such that : V(x) such that: V(x) such that :
c V(x*) =0 e V(x*)=0 e V(x)=0
« V(x)>0 « V(x)>0 ¢« V(x)>0
« V(x)<0 \ « V(x) <0 « V(x)<0
\\ \ \\ * V(x) owas|x—x*|| > oo
\
V(x)is negative  V(x) is positive V(x) is negative \ < radiall
semi-definite definite definite V(x) is radially

unbounded




Recap: Local Definiteness

1
V() ~ 5 (= x)THy () (x = )

» Therefore, we have that V(x) is a locally positive definite function if
and only if the Hessian Hy, (x,) is a positive definite matrix, which
can be assessed from its eigenvalues.

 This result is a basic result from what is known as Morse theory.




Recap: Computing V (x)

* We have in general for x € X that x € T,. X, with x = f(x)
* Therefore, we have
V(x) =Ly, V (x) =(dV(0)If (x)) = (dV (x)]x)
where dV (x) € T, X and
ClY: T X XT,X - R
IS called the duality product on tangent spaces of X.

dV is called the differential of the scalar function V




Recap: Computing V (x)

* For the case X = IR{’:‘ we have that
V(ix) =(dV(x)|x) =dV(x)x

where dV(x) € (R™)* is given by

oV oV
dV(X) = a—xl (X), ,W
n

(X)) = Rlxn




Recap: Computing V (x)
* For the case X = R™ we have that
V(x) ={dV(x)|x) = dV(x)x
where dV(x) € (R™)* is given by
dV(x) = (— (x), Vo (x)) e R1*™

0x4
* |t IS more common to write the above using the gradient vector
oV
/6_x1 (X)\
VI (x) = e R"

@,

The differential and gradient are dual to each other
dV(x) = VW T(x)
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 La Salle’s Invariance Principle




Introduction

« LaSalle’s Invariance Principle is a fundamental result in the stability
analysis of dynamical systems.

* It generalizes Lyapunov’s direct method to handle the case where a
Lyapunov-like function’s time derivative I/ (x) is only negative semi-
definite rather than strictly negative.




Invariant set

» Before discussing LaSalle’s Invariance principle, we introduce the
concept of an invariant set.
* Definition:

 Aset M is an invariant set for a dynamic system if every system trajectory
which starts from a point in M remains in M for all future time.

« Examples of invariant sets:
« Equilibrium points
« Domain of attraction of an equilibrium point
* The whole state space




La Salle’s Invariance Principle

* Let x, € X be an equilibrium point of the dynamical system
2(t) = f(x(1)).
Assume there exists a smooth Lyapunov function V: X — R such that in
some neighborhood Q c X of x,, we have that
 V Is positive definite

« V is negative semi-definite
e LetR:={x € Q|V(x) =0} c Qandlet M c R be the largest invariant set in it.




La Salle’s Invariance Principle

* Let x, € X be an equilibrium point of the dynamical system
x(t) = f(x(®)).
Assume there exists a smooth Lyapunov function V: X — R such that in
some neighborhood Q c X of x,, we have that
 V Is positive definite
« V is negative semi-definite
e LetR:={x € Q|V(x) =0} c Qandlet M c R be the largest invariant set in it.

* If M contains only the equilibrium point (i.e., M = {x.}), then x, Is
locally asymptotically stable with its domain of attraction defined by

Q ={xeQ|V(x)<l}cAq.



La Salle’s Invariance Principle

* Let x, € X be an equilibrium point of the dynamical system
x(t) = f(x(®)).
Assume there exists a smooth Lyapunov function V: X — R such that in
some neighborhood Q c X of x,, we have that
 V Is positive definite
« V is negative semi-definite
e LetR:={x € Q|V(x) =0} c Qandlet M c R be the largest invariant set in it.

* If M contains only the equilibrium point (i.e., M = {x.}), then x, Is
locally asymptotically stable with its domain of attraction defined by

Q ={xeQ|V(x)<l}cAq.

This result is properly called Barbashin-Krasovskii-LaSalle principle!




Recap: Pendulum Case study

- State space model: Equilibrium Points:

. X *1 — (0 O) x*,Z = (7-[’ O)
X1\ 5
(552) - (_szz — (1 Sinxl)' €1,C2 >0

 Lvyapunov’s direct method:

 V(x) = —x2 + ¢, (1 — cosxq) V(X*,1) =0, V@®>0VxeX/{x.}

e V(x)=—cx2<0 V(x) is negative semi-definite - x, ; := (0,0) is stable according
to Lyapunov’s direct method.




Recap: Pendulum Case study

* State space model: Equilibrium Points:
x*,l = (0,0) ) x*,Z = (T[, O)

.7.C1 x2
o p— .
(xz) (_szz —C smx1)’ €12 >0

 Further analysis:

1. Startwith 2 = X
2. Definethe setR := {x € 2 | V(x) = 0}

* R={(x1,x2) € X | x, =0}

Vix) = %xzz + ¢;(1 — cos x,)

V(x) = —cyx2 <0




Recap: Pendulum Case study

- State space model: Equilibrium Points:

. X.1=1(0,0), x.,:=(m,0)
X1\ _ X
(552) - (_szz — (1 Sinxl)' c1,¢2 >0

 Further analysis:

1. Startwith 2 = X
2. Definethe setR := {x € 2 | V(x) = 0}
* R ={(x1,x;) € X | x; = 0}

3. Define the points that form the invariant set in R
* I.e., points that have x, equal to zero
e X, =0=c¢yx, +cysinx; = sinx; =0

2%2 7 0 V(x) = >x2 + (1 — cosxy)
« Thus, the invariant set M is given by M = {x, {,x.,} ?

V(x) = —cyx2 <0




Recap: Pendulum Case study

 Further analysis: Equilibrium Points:
x*,l = (0,0) ) x*,Z = (T[, O)

1. Startwith2 = X
2. DefinethesetR == {x € 2|V (x) = 0}
* R={(x1,%) € X|x, =0}

3. Define the points that form the invariant set in R

* |.e., points that have x, equal to zero
¢ .7.C2 =0= CrX» + C1 Sinxl - Sinx1 =0
« Thus, the invariant set M is given by M = {x, 1, %, ,}

4. Compute level sets of V(x)
« V(x.1) = % (0)2 4+ ¢;(1 —cos0) =0
« V(x.,) = % (0)2+c¢;(1 —cosm) =2¢

Vix) = %xzz + ¢;(1 — cos x,)

V(x) = —cyx2 <0




Recap: Pendulum Case study

 Further analysis: Equilibrium Points:
x*,l = (0,0) ) x*,Z = (T[, O)

5. If we consider only the region
c N =0, ={x€eX|V(x)<2c}
 Refine R = {(xl,xz) € Q2C1| Xy = O}

 The largest invariant setin R c (2,, becomes M = {x, ;}

* Therefore, using La Salle’s Invariance Principle, every solution originating in the region

2, willtend to {x, ;} as t — oo.

 Therefore, x, ; := (0,0) is locally asymptotically stable. .
Vix) = Exzz + ¢;(1 — cos x,)

V(x) = —cyx2 <0




Summary

 Lyapunov’s direct method:

« If you have V(x) < 0 (negative definite), you can conclude asymptotic
stability of that equilibrium.

 LaSalle’s Invariance Principle:
» Works with V(x) < 0 (negative semi-definite).
* This weaker condition only implies that the trajectory stays in or approaches
the set R where V(x).

* You then must check what the motion does within R to conclude asymptotic
convergence.




Outline

« PD Control of a Point Mass on R3




PD Control of Point Mass

* To provide some intuition, let’s start in a simple Euclidean space R".

* The governing equations of a point mass (with no gravity) are:
: 1

e & =1, 1'J=%u

where &, v,u € R3 denote the position, velocity and control forces.




PD Control of Point Mass

* To provide some intuition, let’s start in a simple Euclidean space R".

* The governing equations of a point mass (with no gravity) are:

.1
e & =1, V=—u

where &, v,u € R3 denote the position, velocity and control forces.

* We can rewrite it as the state space model
*x=(p)=(mv) ER’ xR’

.(é‘):(g)+(g)u k= () +gu




PD Control of Point Mass

* To provide some intuition, let’s start in a simple Euclidean space R".

* The governing equations of a point mass (with no gravity) are:

.1
e & =1, V=—u

where &, v,u € R3 denote the position, velocity and control forces.

* We can rewrite it as the state space model
*x=(p)=(mv) ER’ xR’

.(é‘):(g)+(g)u k= () +gu

Note that the total energy of the system is given by
1 1.1 T
Hp)=-—-pp=;mvv




PD Control of Point Mass

« Our control objective Is to stabilize the system at the desired state

Xd = (fd' O)
* A classical proportional-derivative (PD) controller can often be
written as
ce; = —§ ER’
*u=—-K,es —Kyeés
==Ky (§ —$a) —Kgqv = u=y(x)

where K, and K; are positive-definite gain matrices




PD Control of Point Mass

 Closed loop system can be written as

' v
(g) B (_Kp (€ —$Sa) — Kdv) =>x=f(x)+gvkx)

We will show later the stability of this
system using Lyapunov’s direct method




Moving to a “Geometric” Setting

* |t Is not straightforward to extend such PD controller to a non-
Euclidean space.

* For example, for the satellite problem we have that
x = (R,w) € SO(3) x R?

* If we wish to stabilize the system at the desired state x; = (R4, 0),
one cannot simply compute

u=—K,er —Kgep
withes = R — R, ¢ SO(3) and é, = R € T SO(3) to compute the
control torques u € (R3)".




Outline

* Energy balancing formulation




Reformulating PD Control on R?

 Our starting point to develop a geometric PD controller is to express
the proportional term as the gradient of some potential function.

 For the PD controller
Uu=1u,t+tug =—K,es —Kgeg

we can view the proportional part as
u, = —V¥() = —K, e;

If we pick )
W) = 5 (& —&)TK,(E —¢&g)

which is a (global) positive definite function of & € R3.

Recall:
VT (eg) = d¥(es)




Reformulating PD Control on R?

« Such interpretation allows us to perform Lyapunov analysis of the
closed loop system easily.

* We can choose
V(x) =¥() +H(p)
= %(E —&a) ' Kp(§ —8a) + ﬁpTP

Closed loop system

@ B (—V‘P(g) + ud)




Reformulating PD Control on R?

« Such interpretation allows us to perform Lyapunov analysis of the
closed loop system easily.

* We can choose
V(x) =¥() +H(p)
= %(E —&a) ' Kp(§ —8a) + ﬁpTP

* We have that V(x;) = V(&;,0) = 0, and its Hessian given by

Ky, O3x3
Hy(xg) = il >0,
3

03><3 m
Closed loop system

. * Therefore, V(x) is globally positive definite. (g) =( v )

—VW¥(¢) + uy




Reformulating PD Control on R?

 Lyapunov function

Vix) =¥() + H(p)
- The time derivative V (x) along trajectories of the closed loop
system can be written as

V(x) = (dV(x) | %)gs
= (AW (&) §)ps + (dHD)| P)gs
=ETVY(E) + VH (p) p
=vT VY + v [-V¥(E) +uy ]

= UTud

Closed loop system

@ B (—qu(g) + ud)




Reformulating PD Control on R?

 Lyapunov function
V(x) ="¥() + H(p)
* If we choose u; = —K, v, we have hat
Vix) =vTuy; =—-v"'K;,v<0

» Using La Salle’s invariance principle, it follows that x; = (¢4,0) is a
globally asymptotically stable equilibrium point of the closed loop

system.

Closed loop system

@ B (—V‘P(g) + ud)




Energy-balancing interpretation of PD Control on R3

 The PD controller
U=1uy+ Uy

can be interpreted as a sum of an energy-shaping term u,, and a

damping injection term u.

 For a chosen locally positive definite function W(¢) designed such
that ¢4 is @ minimum, one has that u, = —V¥(¢) which yields
Vix) =vTuy.




Energy-balancing interpretation of PD Control on R3

* The PD controller
U=1uy+ Uy

can be interpreted as a sum of an energy-shaping term u,, and a

damping injection term u.

 For a chosen locally positive definite function W(¢) designed such
that ¢4 is @ minimum, one has that u, = —V¥(¢) which yields
Vix) =vTuy.

» Choosing u,; = y(v) to inject damping such that V(x) < 0, one has
with La Salle’s invariance principle that x; = (¢4, 0) is locally
asymptotically stable.



Energy-balancing interpretation of PD Control on R3

* The PD controller
U=1uy+uy

can be interpreted as a sum of an energy-shaping term u,, and a

damping injection term ug.

 For a chosen locally positive definite function W(¢) designed such
that ¢; is @ minimum, one has that u, = —V¥(¢) which yields
Vix) =vTuy.

» Choosing u; = y(v) to inject damping such that V(x) < 0, one has
with La Salle’s invariance principle that x; = (¢4, 0) is locally
asymptotically stable.

« If P(&) has &, to be a global minimum, then x; = (&4, 0) is globally
asymptotically stable.
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