# SCE 594: Special Topics in Intelligent Automation & Robotics

Lecture 21: Geometric PD Control II

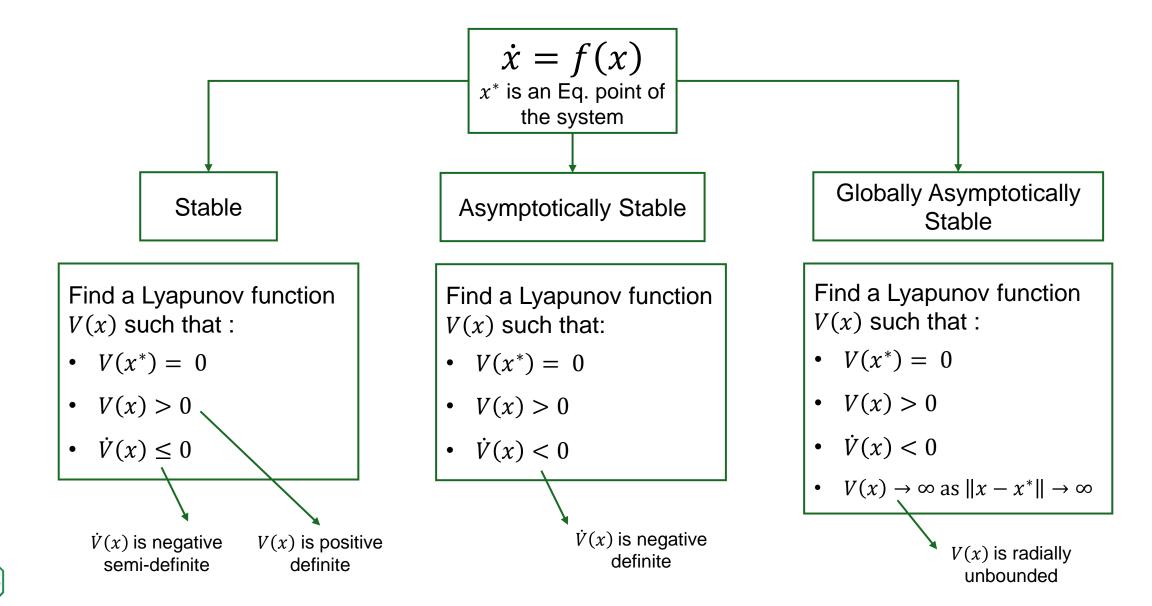


## Outline

- Recap last lectures
- PD Control of a Satellite on SO(3)



## Recap: Lyapunov's Direct Method





# Recap: La Salle's Invariance Principle

• Let  $x_* \in \mathcal{X}$  be an equilibrium point of the dynamical system  $\dot{x}(t) = f(x(t))$ .

Assume there exists a smooth Lyapunov function  $V: \mathcal{X} \to \mathbb{R}$  such that in some neighborhood  $\Omega \subset \mathcal{X}$  of  $x_*$ , we have that

- *V* is positive definite
- $\dot{V}$  is negative semi-definite
- Let  $R := \{x \in \Omega \mid \dot{V}(x) = 0\} \subset \Omega$  and let  $M \subset R$  be the largest invariant set in it.
- If M contains only the equilibrium point (i.e.,  $M = \{x_*\}$ ), then  $x_*$  is locally asymptotically stable with its domain of attraction defined by

$$\Omega_l := \{x \in \Omega \mid V(x) < l\} \subset \Omega.$$



# Recap: PD Control of Point Mass

Point mass dynamics

• 
$$\begin{pmatrix} \dot{\xi} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} v \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ I_3 \end{pmatrix} \frac{\mathbf{u}}{\mathbf{u}}, \quad \text{with } v = \frac{p}{m}$$

- Control objective:
  - Stabilization at  $(\xi_d, 0)$
- PD Control law:

• 
$$u = -K_p (\xi - \xi_d) - K_d v$$
, with  $K_p, K_d > 0$ 

Closed loop dynamics

$$\bullet \begin{pmatrix} \dot{\xi} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} v \\ -K_p (\xi - \xi_d) - K_d v \end{pmatrix}$$



# Recap: Reformulating PD Control on $\mathbb{R}^3$

#### Energy balancing control law

• 
$$\mathbf{u} = u_p + u_d = -\nabla \Psi(\xi) + u_d$$

• 
$$\Psi(\xi) := \frac{1}{2} (\xi - \xi_d)^{\mathsf{T}} K_p(\xi - \xi_d)$$
, with  $K_p > 0$ 

- $\Psi(\xi_d) = 0$
- $\Psi(\xi) > 0$ ,  $\forall \xi \neq \xi_d$

#### Closed loop dynamics

$$\bullet \begin{pmatrix} \dot{\xi} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} v \\ -\nabla \Psi(\xi) + u_d \end{pmatrix}$$



# Recap: Reformulating PD Control on $\mathbb{R}^3$

#### Geometric PD control law

• 
$$\mathbf{u} = u_p + u_d = -\nabla \Psi(\xi) + u_d$$

• 
$$\Psi(\xi) \coloneqq \frac{1}{2} (\xi - \xi_d)^{\mathsf{T}} K_p(\xi - \xi_d)$$
, with  $K_p > 0$ 

• 
$$\Psi(\xi_d) = 0$$

• 
$$\Psi(\xi) > 0$$
,  $\forall \xi \neq \xi_d$ 

#### Closed loop dynamics

$$\bullet \begin{pmatrix} \dot{\xi} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} v \\ -\nabla \Psi(\xi) + u_d \end{pmatrix}$$

#### Lyapunov analysis

• 
$$V(x) = \Psi(\xi) + H(p) = \frac{1}{2}(\xi - \xi_d)^{\mathsf{T}} K_p(\xi - \xi_d) + \frac{1}{2m} p^{\mathsf{T}} p$$

• V(x) is globally positive definite



# Recap: Reformulating PD Control on $\mathbb{R}^3$

Lyapunov analysis

• 
$$\dot{V}(x) = \langle d\Psi(\xi) | \dot{\xi} \rangle_{\mathbb{R}^3} + \langle dH(p) | \dot{p} \rangle_{\mathbb{R}^3}$$
  

$$= v^{\mathsf{T}} \nabla \Psi(\xi) + v^{\mathsf{T}} [-\nabla \Psi(\xi) + u_d]$$
  

$$= v^{\mathsf{T}} u_d$$

- Choosing  $u_d = -K_d v$ , with  $K_d > 0$ :
- $\dot{V}(x) = v^{\mathsf{T}} u_d = -v^{\mathsf{T}} K_d v \le 0$

• Using La Salle's invariance principle, it follows that  $x_d = (\xi_d, 0)$  is a globally asymptotically stable equilibrium point of the closed loop system.



$$u = u_p + u_d = -\nabla \Psi(\xi) - K_d v$$
  
is interpreted as an energy balancing control law

## Outline

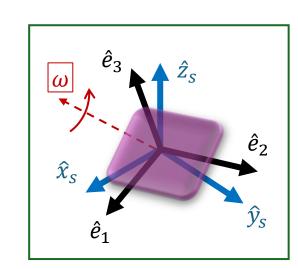
- Recap last lectures
- PD Control of a Satellite on SO(3)



## Satellite

• The governing equations of a satellite with control torques  $\tau$  are:

- $\dot{R} = R \widetilde{\omega}$
- $\dot{\omega} = J^{-1}(-\omega \wedge J\omega + \tau)$





## Satellite

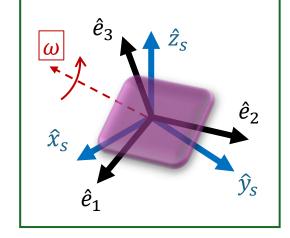
- The governing equations of a satellite with control torques  $\tau$  are:
  - $\dot{R} = R \widetilde{\omega}$
  - $\dot{\omega} = J^{-1}(-\omega \wedge J\omega + \tau)$
- We can cast it into state space form

• 
$$x = (R, p) = (R, J\omega) \in SO(3) \times \mathbb{R}^3$$

with

• 
$$\omega = J^{-1}p$$

• 
$$\beta_R: \mathbb{R}^3 \to T_RSO(3)$$
,  $\omega \mapsto \beta_R(\omega) \coloneqq R \widetilde{\omega}$ 





## PD Control of Satellite

We aim to design a Geometric PD controller

$$\tau = \tau_p + \tau_d$$

such that  $x_d = (R_d, 0)$  is an asymptotically stable equilibrium point of the closed loop system

$$\begin{pmatrix} \dot{R} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} \beta_R(\omega) \\ \tilde{p} \ \omega + \tau_p + \tau_d \end{pmatrix}.$$



## PD Control of Satellite

We aim to design a Geometric PD controller

$$\tau = \tau_p + \tau_d$$

such that  $x_d = (R_d, 0)$  is an asymptotically stable equilibrium point of the closed loop system

$$\begin{pmatrix} \dot{R} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} \beta_R(\omega) \\ \tilde{p} \ \omega + \tau_p + \tau_d \end{pmatrix}.$$

- The controller we seek is geometric in the sense that it respects the underlying non-Euclidean structure of SO(3).
  - $\tau_p$  will be derived from the gradient of some positive definite potential function  $\Psi(R)$  on SO(3) with a minimum at  $R=R_d$ .
  - $\tau_d$  will be designed to inject damping.



## Geometric structure of SO(3)

- The geometric nature of SO(3) will be reflected in
  - 1. How to compute the error between  $R, R_d \in SO(3)$ ?
  - 2. How to design  $\Psi(R)$  to be positive definite?
  - 3. How to compute  $d\Psi(R) \in T_R^*SO(3)$  ?
  - 4. How to convert  $d\Psi(R)$  to the proportional torque  $\tau_p \in \mathbb{R}^3$ ?
  - 5. How to design the derivative torque  $\tau_d \in \mathbb{R}^3$ ?

