# SCE 594: Special Topics in Intelligent Automation & Robotics

Topic 5: Control of Fixed-Base Manipulators

**Lecture 23: Motion Control** 



#### Outline

- Open loop stability analysis
- Stabilization Control



#### Outline

- Open loop stability analysis
- Stabilization Control

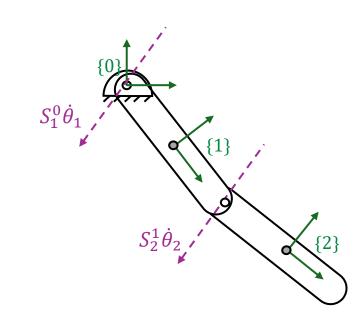


## State Space Dynamics

The governing equations of an n-link manipulator\* with control torques τ are:

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + B(\theta)\dot{\theta} + g(\theta) = \tau$$

where  $\theta \in Q = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1 \cong \mathbb{T}^n$ .





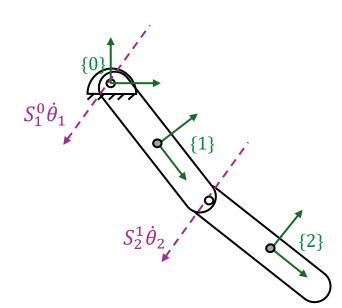
### State Space Dynamics

 The governing equations of an n-link manipulator\* with control torques  $\tau$  are:

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + B(\dot{\theta})\dot{\theta} + g(\theta) = \tau$$

where  $\theta \in Q = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1 \cong \mathbb{T}^n$ .

- We can cast it into state space form
  - $x = (x_1, x_2) = (\theta, \dot{\theta}) \in TQ$





$$c(x) \coloneqq C(x_1, x_2) x_2 \in \mathbb{R}^n$$
,  $b(x_2) \coloneqq B(x_2) x_2 \in \mathbb{R}^n$ ,  $g(x_1) \in \mathbb{R}^n$ 

#### Equilibrium points of open loop system

#### • Proposition:

• For  $\tau = 0$ , the equilibrium points of any n-link manipulator are states  $x_* := (x_{1,*}, x_{2,*})$  that satisfy

$$g(x_{1,*}) = 0_n, x_{2,*} = 0_n.$$



#### Equilibrium points of open loop system

#### • Proposition:

• For  $\tau = 0$ , the equilibrium points of any n-link manipulator are states  $x_* := (x_{1,*}, x_{2,*})$  that satisfy

$$g(x_{1,*}) = 0_n, x_{2,*} = 0_n.$$

#### Proof:

• 
$$\binom{0_n}{0_n} = \binom{x_2}{-M^{-1}(x_1)[c(x) + b(x_2) + g(x_1)]} \Rightarrow x_2 = 0_n \Rightarrow c(x) = b(x_2) = 0_n.$$

Thus, the equilibrium points should satisfy

$$0_n = M^{-1}(x_1)g(x_1)$$
 or equivalently  $0 = g^{\mathsf{T}}(x_1)M^{-1}(x_1)g(x_1)$ 



#### Equilibrium points of open loop system

#### • Proposition:

• For  $\tau = 0$ , the equilibrium points of any n-link manipulator are states  $x_* := (x_{1,*}, x_{2,*})$  that satisfy

$$g(x_{1,*}) = 0_n, x_{2,*} = 0_n.$$

#### Proof:

• 
$$\binom{0_n}{0_n} = \binom{x_2}{-M^{-1}(x_1)[c(x) + b(x_2) + g(x_1)]} \Rightarrow x_2 = 0_n \Rightarrow c(x) = b(x_2) = 0_n.$$

• Thus, the equilibrium points should satisfy

$$0_n = M^{-1}(x_1)g(x_1)$$
 or equivalently  $0 = g^{\mathsf{T}}(x_1)M^{-1}(x_1)g(x_1)$ 

- Since  $M(x_1) > 0$ , we have that  $M^{-1}(x_1) > 0$
- Consequently,  $g^{T}(x_1)M^{-1}(x_1)g(x_1) = 0$  if an only if  $g(x_1) = 0_n$ .



#### Example: 2-link manipulator

Recall that the gravity torques for a 2-link manipulator are given by:

$$g(\theta) = \begin{pmatrix} \gamma_1 \sin \theta_1 + \gamma_2 \sin(\theta_1 + \theta_2) \\ \gamma_2 \sin(\theta_1 + \theta_2) \end{pmatrix}$$

where  $\theta \coloneqq (\theta_1, \theta_2) \in (-\pi, \pi] \times (-\pi, \pi]$  and  $\gamma_1, \gamma_2 \in \mathbb{R}_+$  are constants.



#### Example: 2-link manipulator

Recall that the gravity torques for a 2-link manipulator are given by:

$$g(\theta) = \begin{pmatrix} \gamma_1 \sin \theta_1 + \gamma_2 \sin(\theta_1 + \theta_2) \\ \gamma_2 \sin(\theta_1 + \theta_2) \end{pmatrix}$$

where  $\theta \coloneqq (\theta_1, \theta_2) \in (-\pi, \pi] \times (-\pi, \pi]$  and  $\gamma_1, \gamma_2 \in \mathbb{R}_+$  are constants.

• The equilibrium points  $x_* = (\theta_*, \theta_2)$  of this manipulator should satisfy  $q(\theta_*) = 0_n$ :

$$\sin(\theta_1 + \theta_2) = 0$$
 and  $\sin \theta_1 = 0$ 

Thus, we have that

$$\theta_* = (0,0), \qquad \theta_* = (0,\pi), \qquad \theta_* = (\pi,0), \qquad \theta_* = (\pi,\pi),$$

Consequently:

$$x_* = (0,0,0,0), \qquad x_* = (0,\pi,0,0), \qquad x_* = (\pi,0,0,0), \qquad x_* = (\pi,\pi,0,0),$$



# Stability properties of the origin

Total energy of the system

$$E_{\text{tot}}(\theta, \dot{\theta}) = E_{\text{kin}}(\theta, \dot{\theta}) + E_{\text{pot}}(\theta) = \frac{1}{2} \dot{\theta}^{\mathsf{T}} M(\theta) \dot{\theta} + E_{\text{pot}}(\theta)$$

where  $E_{pot}$ :  $Q \to \mathbb{R}$  is defined such that its gradient:

$$\nabla_{\theta} E_{\text{pot}}(\theta) = g(\theta) \in \mathbb{R}^n$$
.



## Stability properties of the origin

 Consider the Lyapunov function given by the total energy of the mechanical system

$$V(x_1, x_2) = \frac{1}{2} x_2^{\mathsf{T}} M(x_1) x_2 + E_{\text{pot}}(x_1)$$

• Since it represents energy,  $V(x_1, x_2)$  is a positive definite Lyapunov function with a minimum at  $V(0_2, 0_2) = 0$ .



## Stability properties of the origin

 Consider the Lyapunov function given by the total energy of the mechanical system

$$V(x_1, x_2) = \frac{1}{2} x_2^{\mathsf{T}} M(x_1) x_2 + E_{\text{pot}}(x_1)$$

- Since it represents energy,  $V(x_1, x_2)$  is a positive definite Lyapunov function with a minimum at  $V(0_2, 0_2) = 0$ .
- One can show\* that

$$\dot{V}(x_1, x_2) = -x_2^{\mathsf{T}} B(x_2) x_2 \le 0$$

which along with LaSalle's invariance principle shows that  $x_* = (0_2, 0_2)$  is locally asymptotically stable.



#### Outline

- Open loop stability analysis
- Stabilization Control



Done on board!

### Summary

The control law

$$\tau = \tau_p + \tau_d = -K_p (x_1 - \theta_d) - K_d x_2 + g(x_1)$$

makes the closed loop system

$${\dot{x}_1 \choose M(x_1)\dot{x}_2} = {\begin{pmatrix} \dot{x}_1 \\ -c(x) - b(x_2) - K_p(x_1 - \theta_d) - K_d x_2 \end{pmatrix}}$$

have a globally asymptotically equilibrium point at  $x_d = (\theta_d, \theta_2)$ .

