SCE 594: Special Topics in Intelligent Automation & Robotics

Lecture 24: Impedance Control I

- Recap last lecture
- Feedback Linearization Control
- From Motion Control to Impedance Control
- Impedance Control of a Point Mass
- Impedance Control of a n-link manipulator

- Recap last lecture
- Feedback Linearization Control
- From Motion Control to Impedance Control
- Impedance Control of a Point Mass
- Impedance Control of a *n*-link manipulator

Recap: State Space Dynamics

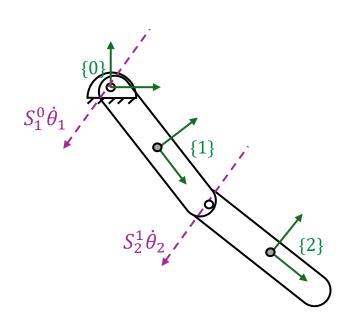
 The governing equations of an n-link manipulator* with control torques τ are:

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + B(\dot{\theta})\dot{\theta} + g(\theta) = \tau$$

where $\theta \in Q = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1 \cong \mathbb{T}^n$.

We can cast it into state space form

•
$$x = (x_1, x_2) = (\theta, \dot{\theta}) \in TQ$$



Recap: Stabilization Control

The control law

$$\tau = \tau_p + \tau_d$$

$$= -\nabla \Psi(x_1) - K_d x_2 = g(x_1) - K_p (x_1 - \theta_d) - K_d x_2$$

makes the closed loop system

$$\begin{pmatrix} \dot{x}_1 \\ M(x_1)\dot{x}_2 \end{pmatrix} = \begin{pmatrix} -c(x) - b(x_2) - K_p(x_1 - \theta_d) - K_d x_2 \end{pmatrix}$$

have a globally asymptotically equilibrium point at $x_d = (\theta_d, \theta_2)$.

Lyapunov function:
$$V_{CL}(x_1, x_2) = V(x_1, x_2) + \Psi(x_1)$$

$$V(x_1, x_2) = \frac{1}{2} x_2^{\mathsf{T}} M(x_1) x_2 + E_{pot}(x_1), \qquad \qquad \Psi(x_1) = \frac{1}{2} (x_1 - \theta_d)^{\mathsf{T}} K_p (x_1 - \theta_d) - E_{pot}(x_1)$$

- Recap last lecture
- Feedback Linearization Control
- From Motion Control to Impedance Control
- Impedance Control of a Point Mass
- Impedance Control of a *n*-link manipulator

Feedback Linearization

- Feedback linearization control aims to cancel out the known nonlinearities by applying a torque command τ that directly "inverts" the dynamics.
- The result (in an ideal, no-uncertainty scenario) is a closed-loop system that behaves like a simple linear system.

Feedback Linearization

For the state space model

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -M^{-1}(x_1) \left[c(x) + b(x_2) + g(x_1) - \tau \right]$$

The feedback linearization control law is given by

$$\tau = c(x) + b(x_2) + g(x_1) - M(x_1) \left[K_p (x_1 - \theta_d) + K_d x_2 \right]$$

yields the closed loop system

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -K_p (x_1 - \theta_d) - K_d x_2 \end{pmatrix}$$

which is globally asymptotically stable at $x_d = (\theta_d, \theta_2)$.

Comparison

Computed Torque Method (CTM):

- Full dynamic compensation: Cancels out all nonlinearities (inertia coupling, Coriolis/centrifugal forces, and gravity) to transform the system into decoupled linear systems.
- Performance: Can achieve very fast, accurate trajectory tracking if the model is good.
- Model dependence: Highly sensitive to model errors; requires accurate knowledge of inertial, Coriolis, and gravity terms.

PD with Gravity Compensation:

- Partial dynamic compensation: Only cancels gravity effects.
- Performance: Good for slow or moderate speed motions; tracking degrades at high speeds due to unmodeled dynamics
- Model dependence: Less sensitive to errors compared to CTM; only needs a reasonable estimate of the gravity vector.

- Recap last lecture
- Feedback Linearization Control
- From Motion Control to Impedance Control
- Impedance Control of a Point Mass
- Impedance Control of a *n*-link manipulator

Paradigm Shift: Motion Control vs. Interaction Control

Motion Control

 Main objective is to achieve stability and reject external disturbances to maximize performance.

Interaction Control

 Main objective is to be able to interact with an unknown environment in a stable & safe manner.

Paradigm Shift: Motion Control vs. Interaction Control

Motion Control

- Closed dynamical system.
- Stability analysis requires closed loop model.

Interaction Control

- Open dynamical system.
- Unknown environment needs to be incorporated in closed loop stability analysis.

Paradigm Shift: Motion Control vs. Interaction Control

Motion Control

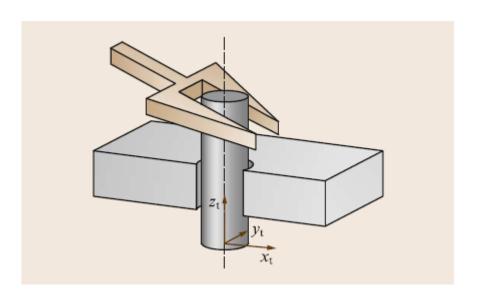
Based on unilateral signals.
 e.g., control of position or velocity

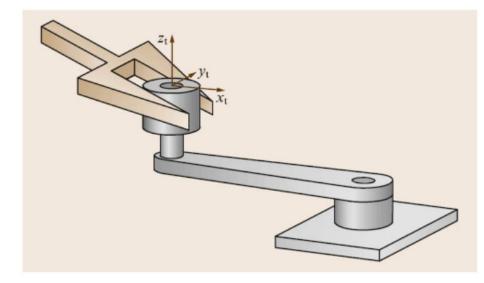
Interaction Control

 Based on bilateral signals
 e.g., control of relation between velocity and force.

Interaction Control

- Controlling either the pose or wrench requires perfect knowledge of the task environment and when contact occurs or not, which is clearly not possible in practice.
- Instead, the behavior (relation between the wrench and pose) of the controlled robot could be modified independent of the environment.

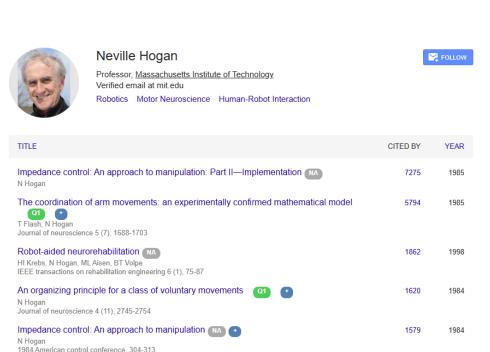




Turning a crank with an idle handle

Impedance Control

 The first one to address this issue in the field of robotics was Neville Hogan in his seminal trilogy.



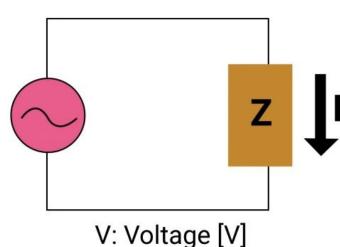
Electrical Impedance and Admittance

 In electrical engineering, impedance (Z) is the total opposition a circuit offers to the flow of alternating current.

$$\vec{Z} = \frac{\vec{V}}{\vec{I}} = R + j X$$

 Admittance (Y) is the reciprocal of impedance and is a measure of how easily a circuit or device will allow a current to flow.

$$\vec{Y} = \frac{\vec{I}}{\vec{V}} = G + j B$$



Phasors (frequency dependent):

$$\vec{V} = |V|e^{j(\omega t + \phi_V)}, \qquad \vec{I} = |I|e^{j(\omega t + \phi_I)}$$

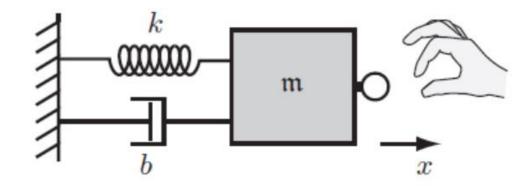
Mechanical Impedance and Admittance

• In mechanical engineering, impedance is a measure of how much a structure resists motion when subjected to a harmonic force.

$$\vec{Z} = \frac{\vec{F}}{\vec{v}}$$

Mechanical admittance is the reciprocal of impedance.

$$\vec{Y} = \frac{\vec{v}}{\vec{F}}$$



Impedance vs. Admittance

Impedance

$$\bullet \ F(s) = Z(s)X(s)$$

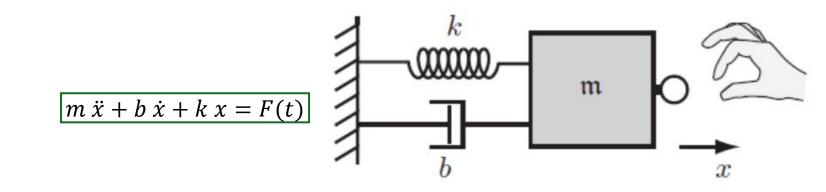
Motion input, Force output

Admittance

$$\bullet \ X(s) = Y(s)F(s)$$

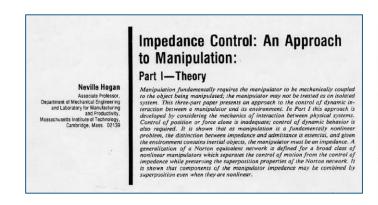
$$\bullet Y(s) = \frac{1}{m \, s^2 + b \, s + k}$$

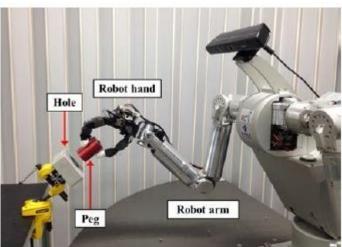
Force input, Motion output



Impedance Control

- Neville Hogan's idea of impedance control is that instead of commanding exact positions or forces, the robot is controlled to behave like a mechanical impedance:
 - It responds to external forces with a desired relationship between force, position, and velocity, like a spring-damper-mass system.
- The key is shaping the robot's dynamic behavior its *stiffness*, damping, and inertia to match the interaction task needs.



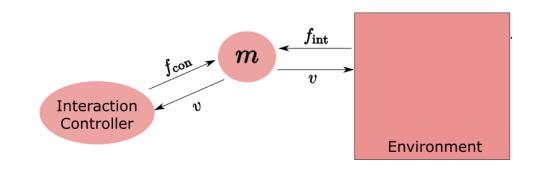


- Recap last lecture
- Feedback Linearization Control
- From Motion Control to Impedance Control
- Impedance Control of a Point Mass
- Impedance Control of a *n*-link manipulator

Point Mass Dynamics

- To provide some intuition, let's start in a simple Euclidean space \mathbb{R}^n .
- The governing equations of a point mass (with no gravity) are:

•
$$\dot{\xi} = v$$
, $m\dot{v} = f_{\rm con} + f_{\rm int}$



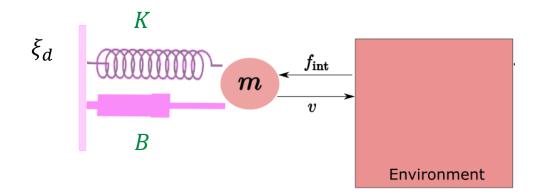
Impedance Control of a Point Mass

- To provide some intuition, let's start in a simple Euclidean space \mathbb{R}^n .
- The governing equations of a point mass (with no gravity) are:

•
$$\dot{\xi} = v$$
, $m\dot{v} = f_{\rm con} + f_{\rm int}$

 The goal of impedance control is to implement the task-space behavior

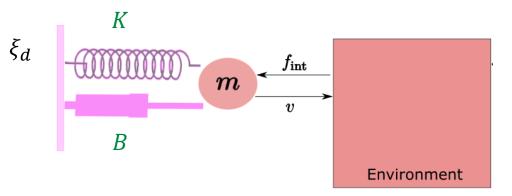
•
$$m \ddot{q} + B \dot{q} + Kq = f_{\text{int}}$$
, $q \coloneqq \xi - \xi_d$,



Impedance Control of a Point Mass

- To provide some intuition, let's start in a simple Euclidean space \mathbb{R}^n .
- The governing equations of a point mass (with no gravity) are:
 - $\dot{\xi} = v$, $m\dot{v} = f_{\rm con} + f_{\rm int}$
- The goal of impedance control is to implement the task-space behavior
 - $m \ddot{q} + B \dot{q} + Kq = f_{\text{int}}$, $q \coloneqq \xi \xi_d$,
- The impedance control law then takes the form

$$f_{\text{con}} = m\ddot{\xi}_d - B(v - \dot{\xi}_d) - K(\xi - \xi_d)$$

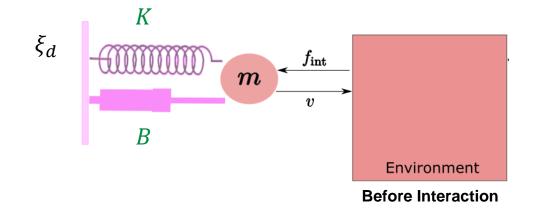


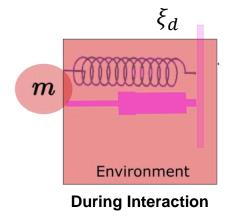
Impedance Control of a Point Mass

• During static interaction ($\ddot{q} = \dot{q} = 0$), the impedance behavior then becomes

$$f_{
m int} = K(\xi - \xi_d)$$
 Motion input, Force Output!

- Therefore, K plays the role of an active stiffness.
- The force applied to the environment depends on K and the virtual setpoint ξ_d .





Impedance Control vs. PD Control

Aspect	PD Control	Impedance Control
Primary goal	Track a desired position (no interaction considered)	Shape the dynamic interaction (force vs motion)
External forces	Seen as disturbances to reject	Part of the behavior to regulate
If environment pushes	Robot tries hard to return to position (may push back aggressively)	Robot "complies" according to set stiffness/damping
Output behavior	Stiff behavior unless you manually tune gains	Adjustable compliance via virtual mass- spring-damper model

$$f_{\rm pd} = -B(v) - K(\xi - \xi_d)$$

$$f_{\text{imp}} = m\ddot{\xi}_d - B(v - \dot{\xi}_d) - K(\xi - \xi_d)$$

- Recap last lecture
- Feedback Linearization Control
- From Motion Control to Impedance Control
- Impedance Control of a Point Mass
- Impedance Control of a n-link manipulator

Impedance Control of *n*-link Manipulator

 Now we consider the impedance control problem of a n-link manipulator governed by

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + B(\dot{\theta})\dot{\theta} + g(\theta) = \tau_{con} + \tau_{int}$$

• where $\tau_{con} \in \mathbb{R}^n$ are joint control torques and $\tau_{int} \in \mathbb{R}^n$ are torques due to interaction with the environment.

Impedance Control of *n*-link Manipulator

• Now we consider the impedance control problem of a n-link manipulator governed by

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + B(\dot{\theta})\dot{\theta} + g(\theta) = \tau_{con} + \tau_{int}$$

• where $\tau_{con} \in \mathbb{R}^n$ are joint control torques and $\tau_{int} \in \mathbb{R}^n$ are torques due to interaction with the environment.

Recall that:

