SCE 594: Special Topics in Intelligent Automation & Robotics

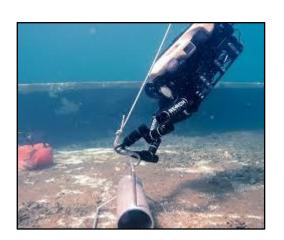
Lecture 2: Maps, Groups & Fields

- Recap: Set theory basics
- Maps between sets
- Adding structure to sets
 - Groups
 - Fields

- Recap: Set theory basics
- Maps between sets
- Adding structure to sets
 - Groups
 - Fields

Recap: Robotic Systems

- Multi-rotor aerial vehicles
- Fixed-based manipulators
- Floating-base manipulators
 - Ground, Aerial, Underwater



Recap: Why Geometric approach?

- Configuration space $\mathbb Q$ of (most) mechanical systems is not $\mathbb R^n$
 - Pendulum
 - *n*-degree-of-freedom manipulator
 - Planar mobile robot
 - Multirotor aerial vehicle
 - Aerial manipulator

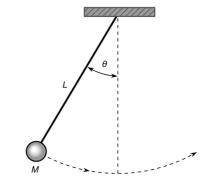
$$\mathbb{Q} = S^1$$

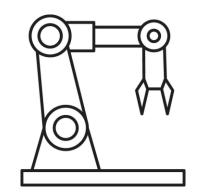
$$\mathbb{Q} = T^n$$

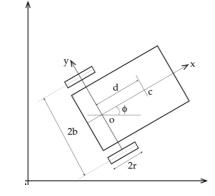
$$\mathbb{Q} = SE(2)$$

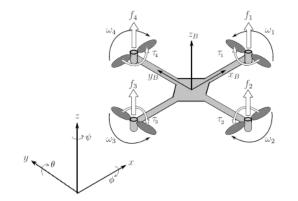
$$\mathbb{Q} = SE(3)$$

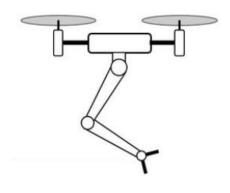
$$\mathbb{Q} = SE(3) \times T^n$$











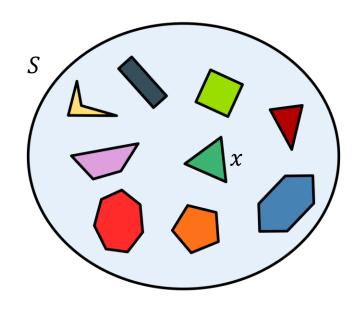
Recap: Structure hierarchy

- A recurrent theme in mathematics is the classification of spaces by means of structure-preserving maps between them.
- Space = set + some structure

Lie Group	Lie Algebra
Symplectic manifold	Algebra
Riemannian manifold	Vector space
Smooth manifold	Field
Topological manifold	Group
Set	

Recap: What is a set?

- A set is intuitively a collection of elements.
 - *x* ∈ *S*
 - $A := \{x \in S \mid \text{conditions on } x\} \subset S$
 - $A := \{ \text{square, rectangle, triangle, ...} \}$
- We can define a set from two other ones by:
 - Cartesian product A × B
 - Union A U B
 - Intersection $A \cap B$



- Recap: Set theory basics
- Maps between sets
- Adding structure to sets
 - Groups
 - Fields

Maps between sets

- Let A and B denote two sets, a **map** f from A to B assigns to each element $x \in A$ an element $f(x) \in B$.
- The standard notation for a map is:

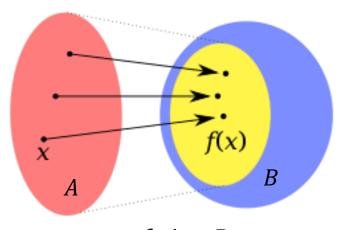
$$f: A \to B$$
$$x \mapsto f(x)$$

Maps between sets

- Let A and B denote two sets, a **map** f from A to B assigns to each element $x \in X$ an element $f(x) \in Y$.
- The standard notation for a map is:

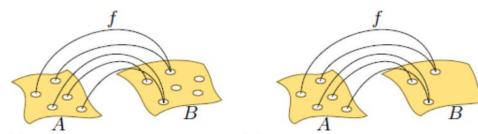
$$f: A \to B$$
$$x \mapsto f(x)$$

- We call:
 - A the **domain** of f.
 - B the codomain/target of f.
 - $im_f(A) := \{f(x) \in B \mid x \in A\}$ the **image** of A under f

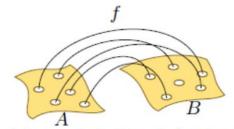


- A map $f: A \rightarrow B$ is said to be:
 - Surjective: if for each $y \in B$, there exists at least one $x \in A$ such that f(x) = y
 - Injective: if the equality $f(x_1) = f(x_2)$ for $x_1, x_2 \in A$ implies that $x_1 = x_2$
 - Bijective: if it is both surjective and injective

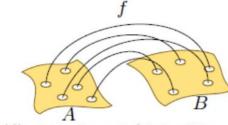
- A map $f: A \rightarrow B$ is said to be:
 - Surjective: if for each $y \in B$, there exists at least one $x \in A$ such that f(x) = y
 - Injective: if the equality $f(x_1) = f(x_2)$ for $x_1, x_2 \in A$ implies that $x_1 = x_2$
 - Bijective: if it is both surjective and injective



(a) not surjective and not in- (b) surjective and not injective.



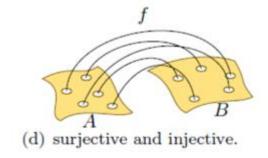
(c) not surjective and injective.



(d) surjective and injective.

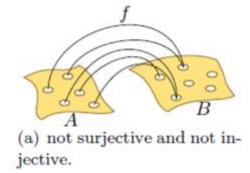
- A map $f: A \rightarrow B$ is said to be:
 - Surjective: if for each $y \in B$, there exists at least one $x \in A$ such that f(x) = y
 - **Injective**: if the equality $f(x_1) = f(x_2)$ for $x_1, x_2 \in A$ implies that $x_1 = x_2$
 - Bijective: if it is both surjective and injective
- Examples:

 - $id_A: A \to A$, $x \mapsto x$ $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$

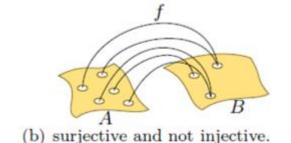


- A map $f: A \rightarrow B$ is said to be:
 - Surjective: if for each $y \in B$, there exists at least one $x \in A$ such that f(x) = y
 - **Injective**: if the equality $f(x_1) = f(x_2)$ for $x_1, x_2 \in A$ implies that $x_1 = x_2$
 - Bijective: if it is both surjective and injective
- Examples:

 - $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \sin(x)$



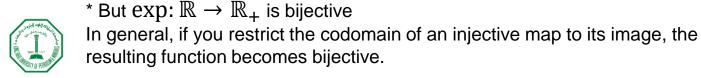
- A map $f: A \rightarrow B$ is said to be:
 - Surjective: if for each $y \in B$, there exists at least one $x \in A$ such that f(x) = y
 - **Injective**: if the equality $f(x_1) = f(x_2)$ for $x_1, x_2 \in A$ implies that $x_1 = x_2$
 - Bijective: if it is both surjective and injective
- Examples:
 - $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \tan(x)$
 - $f: \mathbb{R} \to [-1,1], \qquad x \mapsto \sin(x)$

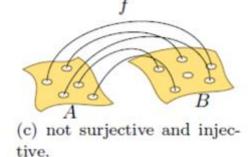


- A map $f: A \rightarrow B$ is said to be:
 - Surjective: if for each $y \in B$, there exists at least one $x \in A$ such that f(x) = y
 - **Injective**: if the equality $f(x_1) = f(x_2)$ for $x_1, x_2 \in A$ implies that $x_1 = x_2$
 - Bijective: if it is both surjective and injective
- Examples:

•
$$\exp: \mathbb{R} \to \mathbb{R}$$
,

$$x \mapsto e^x$$





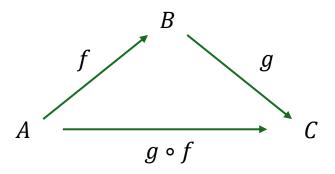
Composition of Maps

• Given two maps $f: A \to B$ and $g: B \to C$, we can construct a third map, called the **composition** of f and g, denoted by $g \circ f$ and defined as:

$$g \circ f: A \to C$$

 $x \mapsto g(f(x)).$

 This is often represented by drawing the following commutative diagram:



Inverse of a map

- Let $f: A \to B$ be a bijective map. Then the **inverse** of f, denoted by $f^{-1}: B \to A$ is defined by:
 - $f^{-1} \circ f = \mathrm{id}_A$
 - $f \circ f^{-1} = \mathrm{id}_B$

• Two sets A and B are called (set-theoretic) **isomorphic** if there exists a bijective map $f: A \to B$. In this case, we write that $A \cong_{\text{set}} B$

- Recap: Set theory basics
- Maps between sets
- Adding structure to sets
 - Groups
 - Fields

Adding structure to sets

- So far, we've considered sets with no additional structure
- Now we'll add more structure to define:
 - Groups
 - Fields

