SCE 594: Special Topics in Intelligent Automation & Robotics

Lecture 3: Vector Spaces I

- Recap: Last Lectures
- Maps between groups
- Vector Space theory I
 - Field
 - Vector space
 - Linear map

- Recap: Last Lectures
- Maps between groups
- Vector Space theory I
 - Field
 - Vector space
 - Linear map

Recap: Why Geometric approach?

- Configuration space $\mathbb Q$ of (most) mechanical systems is not $\mathbb R^n$
 - Pendulum
 - *n*-degree-of-freedom manipulator
 - Planar mobile robot
 - Multirotor aerial vehicle
 - Aerial manipulator

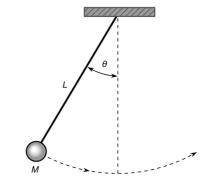
$$\mathbb{Q} = S^1$$

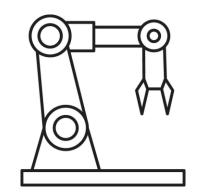
$$\mathbb{Q} = T^n$$

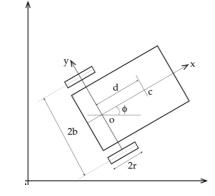
$$\mathbb{Q} = SE(2)$$

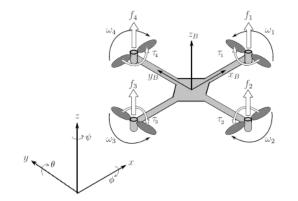
$$\mathbb{Q} = SE(3)$$

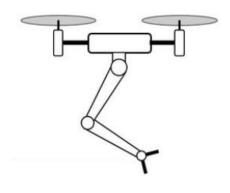
$$\mathbb{Q} = SE(3) \times T^n$$











Recap: Structure hierarchy

- A recurrent theme in mathematics is the classification of spaces by means of structure-preserving maps between them.
- Space = set + some structure

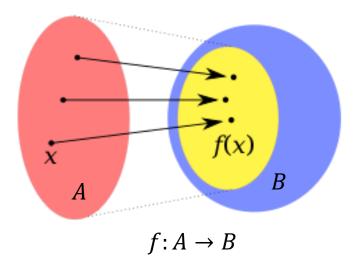


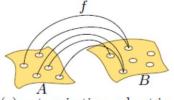
Recap: Maps between sets

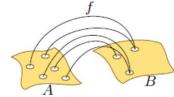
The standard notation for a map is:

$$f: A \to B$$
$$x \mapsto f(x)$$

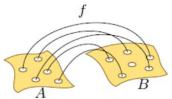
- We call:
 - A the **domain** of f.
 - B the codomain/target of f.
- A map can be either:
 - Surjective
 - Injective
 - Both
 - None



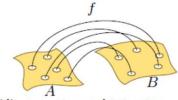




(a) not surjective and not in- (b) surjective and not injective. jective.



(c) not surjective and injec-



(d) surjective and injective.

Recap: Inverse of a map

• Let $f: A \to B$ be a bijective map. Then the **inverse** of f, denoted by $f^{-1}: B \to A$ is defined by:

- $f^{-1} \circ f = \mathrm{id}_A$
- $f \circ f^{-1} = \mathrm{id}_B$

• Two sets A and B are called (set-theoretic) **isomorphic** if there exists a bijective map $f: A \to B$. In this case, we write that $A \cong_{\text{set}} B$

Recap: Group

- A group is a pair (G, \circ) where G is a set and $\circ: G \times G \to G$ is a map (called binary operation) that satisfies:
 - i. $\forall a, b, c \in G$ we have that $(a \circ b) \circ c = a \circ (b \circ c)$
 - ii. $\exists e \in G$ such that $\forall g \in G$ we have that $e \circ g = g \circ e = g$
 - iii. $\forall g \in G, \exists g^{-1} \in G \text{ such that } g^{-1} \circ g = g \circ g^{-1} = e$
- A group (G, \circ) is also called **Abelian** if it satisfies:
 - iv. $a \circ b = b \circ a$, $\forall a, b \in G$

- Recap: Last Lectures
- Maps between groups
- Vector Space theory I
 - Field
 - Vector space
 - Linear map

Maps between groups

- Let (G, \oplus) and (H, \odot) be two groups.
- If there exists a map $\rho: G \to H$ that satisfies:
 - $\rho(a \oplus b) = \rho(a) \odot \rho(b) \quad \forall a, b \in G$

Then we call the map $\rho: G \to H$ a **group homomorphism**.

- If ρ is also a bijective map, then we call ρ a (group) **isomorphism**
- If there exists an isomorphism between (G, \oplus) & (H, \odot) , then we say that G and H are (group-theoretic) isomorphic to each other.

$$G \cong_{grp} H$$

Examples

1. The map

$$\exp: \mathbb{R} \to \mathbb{R}_+$$

$$t \mapsto e^t$$

is a group *isomorphism* between $(\mathbb{R}, +)$ and (\mathbb{R}_+, \cdot) because of the property $e^{t_1+t_2}=e^{t_1}\cdot e^{t_2}$.

2. The map

$$\det: GL(n, \mathbb{R}) \to \mathbb{R} \setminus \{0\}$$

$$A \mapsto \det(A)$$

is a group *homomorphism* between $(GL(n, \mathbb{R}), \odot)$ and $(\mathbb{R}\setminus\{0\},\cdot)$ because of the property $\det(A\odot B) = \det(A)\cdot\det(B)$

- Recap: Last Lectures
- Maps between groups
- Vector Space theory I
 - Field
 - Vector space
 - Linear map

Vector Spaces

- Now we will turn attention to vector spaces (aka linear spaces)
- It is convenient to consider them in more abstract terms than to simply think of \mathbb{R}^n .
- A vector space (V, \bigoplus, \bigcirc) is a set that is equipped with two operations satisfying certain properties, not just a set of *n-tuples*.

• To define a vector space, we need to define first what is a field $(K, +, \cdot)$

Field

- An (algebraic) field is a triple $(K, +, \cdot)$ where K is a set equipped with the maps $+, \cdot : K \times K \to K$ satisfying:
 - (K, +) is an Abelian group
 - $(K\setminus\{0\}, \cdot)$ is an Abelian group
 - The maps + and satisfy the distributive property i.e.

```
\forall a, b, c \in K we have that (a + b) \cdot c = a \cdot c + b \cdot c
```

Recall (K, +) is an Abelian group

- i. $\forall a, b, c \in K$ we have that (a + b) + c = a + (b + c)
- ii. $\exists \ 0 \in K$ such that $\forall a \in K$ we have that 0 + a = a + 0 = a
- ii. $\forall a \in K, \exists -a \in K \text{ such that } a + (-a) = (-a) + a = 0$
- iv. a + b = b + a, $\forall a, b \in K$

Field

- An (algebraic) field is a triple $(K, +, \cdot)$ where K is a set equipped with the maps $+, \cdot : K \times K \to K$ satisfying:
 - (K, +) is an Abelian group
 - $(K\setminus\{0\}, \cdot)$ is an Abelian group
 - The maps + and · satisfy the distributive property i.e.

 $\forall a, b, c \in K$ we have that $(a + b) \cdot c = a \cdot c + b \cdot c$

Example:

- The sets \mathbb{R} , \mathbb{Q} , \mathbb{C} are all fields under the usual addition and multiplication operations
- The triple $(\mathbb{Z}, +, \cdot)$ is not a field

Recall (K, +) is an Abelian group

- i. $\forall a, b, c \in K$ we have that (a + b) + c = a + (b + c)
- ii. $\exists \ 0 \in K$ such that $\forall a \in K$ we have that 0 + a = a + 0 = a
- iii. $\forall a \in K, \exists -a \in K \text{ such that } a + (-a) = (-a) + a = 0$
- iv. a + b = b + a, $\forall a, b \in K$

Vector space

- A vector space (V, \bigoplus, \bigcirc) over a field $(K, +, \cdot)$ is the set V equipped with two operations:
 - $\bigoplus: V \times V \to V$ called vector addition
 - $\bigcirc: K \times V \to V$ called scalar multiplication

that should satisfy the rules:

- (V,⊕) is an Abelian group
- The map \odot is an action of K on (V, \oplus) :

```
i) \forall \lambda \in K : \forall v, w \in V : \lambda \odot (v \oplus w) = (\lambda \odot v) \oplus (\lambda \odot w);
```

ii)
$$\forall \lambda, \mu \in K : \forall v \in V : (\lambda + \mu) \odot v = (\lambda \odot v) \oplus (\mu \odot v);$$

iii)
$$\forall \lambda, \mu \in K : \forall v \in V : (\lambda \cdot \mu) \odot v = \lambda \odot (\mu \odot v);$$

iv)
$$\forall v \in V : 1 \odot v = v$$
.

• An element of $v \in V$ is called a **vector**.

Prototypical Example

- $(\mathbb{R}^n, \bigoplus, \odot)$ is a vector space over the field $(\mathbb{R}, +, \cdot)$.
- The vector space \mathbb{R}^n (not the set !!) is frequently called the **n-dimensional Euclidean space**.

Maps between vector spaces

Set

S

Group (G, \odot)

Vector space over a **Field**

 (V, \bigoplus, \bigcirc)

Maps

Bijections

Group homomorphisms

Group isomorphisms

Linear maps

Linear isomorphisms

