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Recap: Structure hierarchy

« Arecurrent theme in mathematics is the classification of spaces by
means of structure-preserving maps between them.

° Space = set + some structure

Set Group Vector space over a Field
Mathematical object S (G,D) (V,H,0) over (K,+,")
Structure-preserving map Map Group homomorphism Linear map
f:S$S -T p:G - H AV S W
Isomorphic spaces Bijection Group isomorphism Linear isomorphism
S Eset ']I‘ Egrp H V Evec W




Recap: Vector space

» A vector space (V,,») over a field (K, +,:) is the set V equipped

with two operations:
« P:VxV -V called vector addition
* O: K xV -V called scalar multiplication

that should satisfy the rules:
* (V,@®) is an Abelian group
« The map © is an action of K on (V,®)

« An element of v € VV Is called a vector.




Recap: Vector space

Example is (R™™.H,O):

Example is (R",H,O):

(x;)EB(yEl).:(xlTyl) 11 0 Qan byy -+ bip a1 +byy 0 ain + by

Am1 +bm1 - A+ by

xl /1'x1
. A@( 2 ):: : A1t Gin Adyy e Adgn
Xn Aexy . /1@( : " : );: : :
Am1 " Amn Ay, 0 Aamn,
; 0 0
+ ldentity element of (R™,) is the zero vector | : _ _
’ ( ) (0> « Identity element of (R™*™,@) is the zero matrix ( >
0 - 0




Recap: Linear Maps

* Alinear map A:V — W between the vector spaces (I/,,(H) and

(W ,H,[-]) over the same field K is defined such that:
*c A(v; D vy) =Aw) HAW,), Vv,v, €V
c AMOv)=A[1AW), Vv eEV,AEK

* If we drop the special notation for operators,
A(Avl + Uz) — /114(171) ~+ A(Uz)

* The set of all linear maps from a vector space IV to W is itself a
vector-space, denoted by L(V; W).



Recap: Linear Maps

« Example: V = R" , W = R™

* You can prove that any linear map 4: R™ - R™ must have the form:

AWw) = (Tajvh, -, Ya™v) ,

In components

with a! € Rfori € {1,--,n},j € {1,--,m}.

1 1
al an Ul
at g \pn

e L(R™; R™) = R™ ™ |n this case

m — rows, n - columns




Example: Map that is not linear

« Example: V = R" , W = R™
* Consider the map ¥: R™ - R™ between vector spaces defined by:

Y(v) = (Zailvi + b1, ---,Za}"vi + bm) ,
with a/, b/ € R for i € {1,--,n},j € {1,---,m}.

a% a111 Ul bl
Yw)y=(: =~ || :|+| : |=AW)+Db
ain a;}f ph pm

« Amap W of the form above Is called an affine map and is not a
linear map.

YAv) =A(Av)+ b =21 AW) + b # 1 ¥(v)




Recap: Subsets of L(V, W)

e L(V: W) = {A| A:V 3 W)
 End(V) = L(V,V) ={A €LV, W) |W = V)
* Aut(V) = {4 € End(V)| A is an isomorphism}

« Example V = R™:
« End(R") = R™"
* Aut(R") = GL(n, R)
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Dual space

* The notion of a dual (vector) space V* to a vector space V Is
extremely important in mechanics.

* However, it Is usually overlooked !!

 While an element of V Is called a vector, an element of V* is called a

covector®.
 Velocity-like variables are vectors.
* Force-like variables are covectors.

W= *Also referred to as one-form.



Dual space

* Let V be a vector space over the field K

 The dual spacetoV is:
V*:=L(V;K),
where (K, +,:) Is considered a vector space over itself.

 An element of « € V* Is a linear map from VV to K called a covector

or one-form.
a:V S5 K
v a(v)




Example: Dual space

« Example: IV = R", K =R
* The dual space (R™)* consists of all linear maps:
a:R" S R
v a(v)

that have the form ,

a(v) = 2 ;v

=1

In components

Ul
a(v) = (@1 - an) ( ; )
vn




Dual of a linear map

* |t Is conventional to introduce a duality pairing between vectors and
covectors denoted by:
(-])V*xXV 3 K
(a,v) » (a|v) = a(v)
Let A:U — V be alinear map between the K-vector spaces U and V.
Then the linear map A*:V* — U™ defined (implicitly) by:

(A" () |u) = (a|A(u)), Vu€eU,aeV*

IS called the dual of the map A.
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* Tensor spaces




Tensors

* Let VV be a vector space over K. A (p,q) tensor T on V is a multi-
linear map
T:V*X--XV*XVX-- XV 5 K

D times q times

l.e., T Is a map that eats p-covectors and g-vectors.
* The term multi-linear means T is a linear map in each of its entries.
* The rank of a tensor T Is the sum:

rank(T) =p +q




Tensors

e Cases of interest:

* (0,1) tensor is a covector a:V = K

* (1,0) tensor is a vector v:V* 5 K

* (1,1) tensor A:V*xXV S K
* (0,2) tensor B:V XV S K
* (2,0) tensor C:V*XV* S5 K

* The set of all (p,qg) tensor T on V is denoted by TCfV and we can

make It into a vector-space structure.
chV = {T | T is a (p, q) tensor on V}
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 Bases and components




Components of tensors

 So far, the mathematical objects on vector spaces we introduced
are abstractly defined.
 Vectors, covectors, linear maps, dual of linear maps, (p, g) tensors.

* All these objects can be written in components once a basis has
been chosen.

* However, the geometric nature of these objects should be
respected independent of the basis we choose.




Basis for a vector space

* Let V be a vector space. A basis S for a vector space V is a
collection of vectors in V that are:
* Linearly independent from each other
 Generate V




Basis for a vector space

* Let V be a vector space over R. A basis S for a vector space V Is a
collection of vectors in V that are:

* Linearly independent from each other

 AsetS c V of vectors is linearly independent if, for every finite subset {e,, -, e} € S,

the equality
é‘=iciek = cle; + -+ c¥e, = 0, for some constants ¢! € R,

implies that these constants should be zero, i.e., ¢! =0 Vi € {1,---,k}.

e Generate V




Basis for a vector space

* Let V be a vector space over R. A basis S for a vector space V Is a
collection of vectors in V that are:

* Linearly independent from each other

 AsetS c V of vectors is linearly independent if, for every finite subset {e,::-,e;} C S,
the equality

é‘=iciek =cle, + -+ ckek = 0, for some constants ¢! € R,
implies that these constants should be zero, i.e., ¢! =0 Vi € {1,---,k}.

e Generate V

« AsetS c V of vectors generates a vector space V, if every vector v € V can be written
as the linear combination

v =cle; + -+ c¥e, , for some constants ¢! € R
» We usually write that IV = spang(S)
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