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Recap: Structure hierarchy

• A recurrent theme in mathematics is the classification of spaces by 
means of structure-preserving maps between them.

• Space = set + some structure

Set Group Vector space over a Field

Mathematical object 𝕊 (𝐺,⊕) 𝑉,⊕,⊙ over 𝐾, +,∙

Structure-preserving map Map

𝑓: 𝕊 → 𝕋
Group homomorphism

𝜌: 𝐺 → 𝐻
Linear map

𝐴: 𝑉 ෥→ 𝑊

Isomorphic spaces Bijection

𝕊 ≅set 𝕋
Group isomorphism

𝐺 ≅grp 𝐻
Linear isomorphism

𝑉 ≅vec 𝑊



Recap: Vector space

• A vector space 𝑉,⊕,⊙ over a field (𝐾, +,∙) is the set 𝑉 equipped 
with two operations:
• ⊕: 𝑉 × 𝑉 → 𝑉 called vector addition

• ⊙ ∶ 𝐾 × 𝑉 → 𝑉 called scalar multiplication

that should satisfy the rules:
• (𝑉,⊕) is an Abelian group

• The map ⊙ is an action of 𝐾 on 𝑉,⊕

• An element of v ∈ 𝑉 is called a vector.



Recap: Vector space

• Example is (ℝ𝒏,⊕,⊙):

•

𝑥1

⋮
𝑥𝑛

⊕

𝑦1

⋮
𝑦𝑛

: =

𝑥1 + 𝑦1

⋮
𝑥𝑛 + 𝑦𝑛

• 𝜆 ⊙

𝑥1

⋮
𝑥𝑛

: =
𝜆 ∙ 𝑥1

⋮
𝜆 ∙ 𝑥𝑛

• Identity element of (ℝ𝒏,⊕) is the zero vector
0
⋮
0

• Example is (ℝ𝒎×𝒏,⊕,⊙):

•

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

⊕
𝑏11 ⋯ 𝑏1𝑛

⋮ ⋱ ⋮
𝑏𝑚1 ⋯ 𝑏𝑚𝑛

: =
𝑎11 + 𝑏11 ⋯ 𝑎1𝑛 + 𝑏1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 + 𝑏𝑚1 ⋯ 𝑎𝑚𝑛 + 𝑏𝑚𝑛

• 𝜆 ⊙

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

: =
𝜆𝑎11 ⋯ 𝜆𝑎1𝑛

⋮ ⋱ ⋮
𝜆𝑎𝑚1 ⋯ 𝜆𝑎𝑚𝑛

• Identity element of (ℝ𝒎×𝒏,⊕) is the zero matrix
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0



Recap: Linear Maps

• A linear map 𝐴: 𝑉 → 𝑊 between the vector spaces 𝑉,⊕,⊙  and 
𝑊,⊞,⊡  over the same field 𝐾 is defined such that:
• 𝐴 𝑣1 ⊕ 𝑣2 = 𝐴 𝑣1 ⊞ 𝐴 𝑣2 ,  ∀ 𝑣1, 𝑣2 ∈ 𝑉

• 𝐴 𝜆 ⊙ 𝑣 = 𝜆 ⊡ 𝐴(𝑣) ,  ∀ 𝑣 ∈ 𝑉, 𝜆 ∈ 𝐾

• If we drop the special notation for operators,
𝐴 𝜆𝑣1 + 𝑣2 = 𝜆 𝐴 𝑣1 + 𝐴(𝑣2)

• The set of all linear maps from a vector space 𝑉 to 𝑊 is itself a 
vector-space, denoted by L(𝑉; 𝑊).



Recap: Linear Maps

• Example: 𝑉 = ℝ𝑛 , 𝑊 = ℝ𝑚

• You can prove that any linear map 𝐴: ℝ𝑛 → ℝ𝑚 must have the form:

𝐴 𝑣 = ∑𝑎𝑖
1𝑣𝑖 , ⋯ , ∑𝑎𝑖

𝑚𝑣𝑖  ,

with 𝑎𝑖
𝑗

∈ ℝ for 𝑖 ∈ {1, ⋯ , 𝑛}, 𝑗 ∈ {1, ⋯ , 𝑚}.

• L ℝ𝑛; ℝ𝑚 = ℝ𝑚×𝑛 in this case

𝐴 𝑣 =
𝑎1

1 ⋯ 𝑎𝑛
1

⋮ ⋱ ⋮
𝑎1

𝑚 ⋯ 𝑎𝑛
𝑚

∙
𝑣1

⋮
𝑣𝑛

𝑚 – rows, 𝑛 - columns

In components



Example: Map that is not linear

• Example: 𝑉 = ℝ𝑛 , 𝑊 = ℝ𝑚

• Consider the map Ψ: ℝ𝑛 → ℝ𝑚 between vector spaces defined by:

Ψ 𝑣 = ∑𝑎𝑖
1𝑣𝑖 + 𝑏1, ⋯ , ∑𝑎𝑖

𝑚𝑣𝑖 + 𝑏𝑚  ,

with 𝑎𝑖
𝑗
, 𝑏𝑗 ∈ ℝ for 𝑖 ∈ {1, ⋯ , 𝑛}, 𝑗 ∈ {1, ⋯ , 𝑚}.

• A map Ψ of the form above is called an affine map and is not a 
linear map.

Ψ 𝑣 =
𝑎1

1 ⋯ 𝑎𝑛
1

⋮ ⋱ ⋮
𝑎1

𝑚 ⋯ 𝑎𝑛
𝑚

∙
𝑣1

⋮
𝑣𝑛

+
𝑏1

⋮
𝑏𝑚

= 𝐴 𝑣 + 𝑏

Ψ 𝜆𝑣 = 𝐴 𝜆𝑣 + 𝑏 = 𝜆 𝐴 𝑣 + 𝑏 ≠ 𝜆 Ψ 𝑣

In components



Recap: Subsets of L(𝑉, 𝑊) 

• 𝐿 𝑉; 𝑊 ≔ 𝐴  𝐴: 𝑉 ෥→ 𝑊}

• End 𝑉 ≔ 𝐿 𝑉, 𝑉  ≔ 𝐴 ∈ 𝐿 𝑉, 𝑊  𝑊 = 𝑉}

• Aut 𝑉  ≔ 𝐴 ∈ End 𝑉  𝐴 is an isomorphism}

• Example 𝑉 = ℝ𝑛:
• End ℝ𝑛 = ℝ𝑛×𝑛

• Aut ℝ𝑛 = 𝐺𝐿(𝑛, ℝ)

L(𝑉, 𝑊) 

End(𝑉)

Aut(𝑉)
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Dual space

• The notion of a dual (vector) space 𝑽∗ to a vector space 𝑽 is 
extremely important in mechanics.

• However, it is usually overlooked !!

• While an element of 𝑽 is called a vector, an element of 𝑽∗ is called a 
covector*.
• Velocity-like variables are vectors.

• Force-like variables are covectors.

* Also referred to as one-form.



Dual space

• Let 𝑉 be a vector space over the field 𝐾

• The dual space to 𝑉 is:

𝑉∗ ≔ 𝐿(𝑉; 𝐾),

where (𝐾, +,∙) is considered a vector space over itself.

• An element of 𝛼 ∈ 𝑉∗ is a linear map from 𝑉 to 𝐾 called a covector 
or one-form.

𝛼: 𝑉 ෥→  𝐾 
𝑣 ↦ 𝛼(𝑣)



Example: Dual space

• Example: 𝑉 = ℝ𝑛, 𝐾 = ℝ

• The dual space ℝ𝑛 ∗ consists of all linear maps:

𝛼: ℝ𝑛 ෥→ ℝ 
𝑣 ↦ 𝛼(𝑣)

that have the form

𝛼 𝑣 = ෍

𝑖=1

𝑛

𝛼𝑖𝑣𝑖

𝛼 𝑣 = 𝛼1 ⋯ 𝛼𝑛 ∙
𝑣1

⋮
𝑣𝑛

In components



Dual of a linear map

• It is conventional to introduce a duality pairing between vectors and 
covectors denoted by:

⋅ | ⋅ : 𝑉∗ × 𝑉 ෥→  𝐾 
𝛼, 𝑣 ↦ 𝛼|𝑣 ≔ 𝛼(𝑣)

• Let 𝐴: 𝑈 → 𝑉 be a linear map between the 𝐾-vector spaces 𝑈 and 𝑉. 

Then the linear map 𝐴∗: 𝑉∗  → 𝑈∗ defined (implicitly) by:

𝐴∗(𝛼)|𝑢 = 𝛼|𝐴(𝑢) ,  ∀𝑢 ∈ 𝑈, 𝛼 ∈ 𝑉∗

is called the dual of the map A.
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Tensors

• Let 𝑉 be a vector space over 𝐾. A 𝑝, 𝑞  tensor 𝑇 on 𝑉 is a multi-
linear map

𝑇: 𝑉∗ × ⋯ × 𝑉∗

𝑝 times

× 𝑉 × ⋯ × 𝑉
𝑞 times

 ෥→  𝐾

i.e., 𝑇 is a map that eats 𝑝-covectors and 𝑞-vectors.

• The term multi-linear means 𝑇 is a linear map in each of its entries.

• The rank of a tensor 𝑇 is the sum:

 rank(𝑇) = 𝑝 + 𝑞



Tensors

• Cases of interest:
• (0,1) tensor is a covector         𝛼: 𝑉 ෥→  𝐾

• (1,0) tensor is a vector             𝑣: 𝑉∗  ෥→  𝐾

• (1,1) tensor                              𝐴: 𝑉∗ × 𝑉 ෥→  𝐾

• (0,2) tensor                              𝐵:  𝑉 × 𝑉 ෥→  𝐾

• (2,0) tensor                              𝐶: 𝑉∗ × 𝑉∗  ෥→  𝐾

• The set of all 𝑝, 𝑞  tensor 𝑇 on 𝑉 is denoted by 𝑇𝑞
𝑝

𝑉 and we can 

make it into a vector-space structure.
𝑇𝑞

𝑝
𝑉 ≔ 𝑇 𝑇 is a 𝑝, 𝑞  tensor on V}
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Components of tensors

• So far, the mathematical objects on vector spaces we introduced 
are abstractly defined.
• Vectors, covectors, linear maps, dual of linear maps, (𝑝, 𝑞) tensors.

• All these objects can be written in components once a basis has 
been chosen.

• However, the geometric nature of these objects should be 
respected independent of the basis we choose.



Basis for a vector space

• Let 𝑉 be a vector space. A basis 𝑆 for a vector space 𝑉 is a 
collection of vectors in 𝑉 that are:
• Linearly independent from each other

• Generate 𝑉



Basis for a vector space

• Let 𝑉 be a vector space over ℝ. A basis 𝑆 for a vector space 𝑉 is a 
collection of vectors in 𝑉 that are:
• Linearly independent from each other

• A set 𝑆 ⊂ 𝑉 of vectors is linearly independent if, for every finite subset 𝑒1, ⋯ , 𝑒𝑘 ⊂ 𝑆, 
the equality 

 ∑𝑖=𝑖
𝑘 𝑐𝑖𝑒𝑘 = 𝑐1𝑒1 + ⋯ + 𝑐𝑘𝑒𝑘 = 0, for some constants 𝑐𝑖 ∈ ℝ, 

   implies that these constants should be zero, i.e., 𝑐𝑖 = 0 ∀𝑖 ∈ {1, ⋯ , 𝑘}.

• Generate 𝑉



Basis for a vector space

• Let 𝑉 be a vector space over ℝ. A basis 𝑆 for a vector space 𝑉 is a 
collection of vectors in 𝑉 that are:
• Linearly independent from each other

• A set 𝑆 ⊂ 𝑉 of vectors is linearly independent if, for every finite subset 𝑒1, ⋯ , 𝑒𝑘 ⊂ 𝑆, 
the equality 

 ∑𝑖=𝑖
𝑘 𝑐𝑖𝑒𝑘 = 𝑐1𝑒1 + ⋯ + 𝑐𝑘𝑒𝑘 = 0, for some constants 𝑐𝑖 ∈ ℝ, 

   implies that these constants should be zero, i.e., 𝑐𝑖 = 0 ∀𝑖 ∈ {1, ⋯ , 𝑘}.

• Generate 𝑽
• A set 𝑆 ⊂ 𝑉 of vectors generates a vector space 𝑉, if every vector v ∈ 𝑉 can be written 

as the linear combination

 𝑣 = 𝑐1𝑒1 + ⋯ + 𝑐𝑘𝑒𝑘 , for some constants 𝑐𝑖 ∈ ℝ

• We usually write that 𝑉 = spanℝ(𝑆)
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