SCE 594: Special Topics in Intelligent Automation & Robotics

Lecture 5: Manifolds and Lie groups

- Why differentiable structure?
- Atlas of the world
- Manifold theory
- Maps on a manifold
- Construction of the tangent bundle

- Why differentiable structure?
- Atlas of the world
- Manifold theory
- Maps on a manifold
- Construction of the tangent bundle

Different views of \mathbb{R}^n

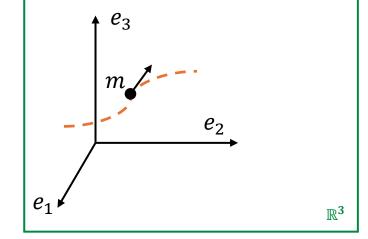
- As a set $\mathbb{R}^n \coloneqq \mathbb{R} \times \cdots \times \mathbb{R}$
- As a vector space $(\mathbb{R}^n, \oplus, \odot)$ over $(\mathbb{R}, +, \cdot)$



Different views of \mathbb{R}^n

- As a set $\mathbb{R}^n \coloneqq \mathbb{R} \times \cdots \times \mathbb{R}$
- As a vector space $(\mathbb{R}^n, \oplus, \odot)$ over $(\mathbb{R}, +, \cdot)$
- To do calculus, analysis, and describe dynamical systems we need more structure.
- This is called a differentiable structure.

• A set *M* along with this differentiable structure is called a differentiable manifold.



Differentiability Class of functions

 In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain.

- Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be a map from an open interval of \mathbb{R} to \mathbb{R} . Then the function f is said to be of:
 - Class C^0 : if f is continuous on I
 - Class C^1 : if its derivative f' exists and both f, f' are continuous on I
 - Class C^k : if its derivatives $f', f'', \dots, f^{(k)}$ exist and are all continuous on I
 - Class C^{∞} : if it has derivatives of all orders on I

Differentiability Class of functions

• The same concept can be extended to maps on \mathbb{R}^n

• Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be a map from an open interval of \mathbb{R}^n to \mathbb{R} . Then the function f is said to be of class C^k , for some positive integer k, if all partial derivatives

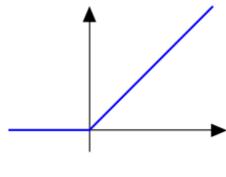
$$rac{\partial^{lpha}f}{\partial x_1^{lpha_1}\;\partial x_2^{lpha_2}\;\cdots\;\partial x_n^{lpha_n}}(y_1,y_2,\ldots,y_n)$$

exist and are continuous on U.

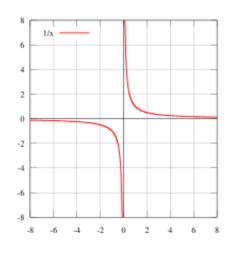
What does a continuous function mean?

• The formal way of analyzing continuity of functions is by making a set M into a topological space by equipping it with a topology σ .

- When you do analysis on Euclidean space \mathbb{R}^n , you are using its standard topology σ_{std} .
- How do we do analysis on general topological spaces that are not Euclidean?



 C^0 function on \mathbb{R}



Not a C^0 function on $\mathbb R$

- Why differentiable structure ?
- Atlas of the world
- Manifold theory
- Maps on a manifold
- Construction of the tangent bundle

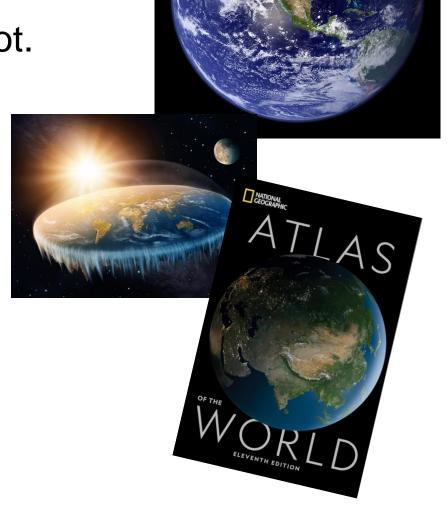
Atlas of the world

 The surface of the earth is an example of a twodimensional non-Euclidean space.

• Locally, S^2 "looks-like" \mathbb{R}^2 but globally it is not.

$$S^2 := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = c^2\}$$

- An atlas of Earth is a collection of charts.
- Each chart maps a "local" region of Earth into a piece of paper \mathbb{R}^2 .



Charts

 Consider two charts over Egypt and Saudi Arabia.

S² Earth

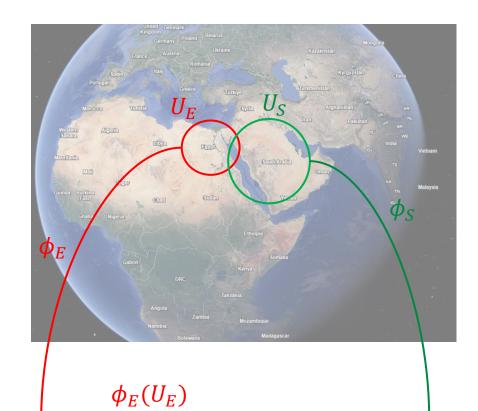
\mathbb{R}^2 charts

Charts

• A chart of Earth consists of the pair (U, ϕ) where $U \subset S^2$ and $\phi: U \to \mathbb{R}^2$ is a continuous map.

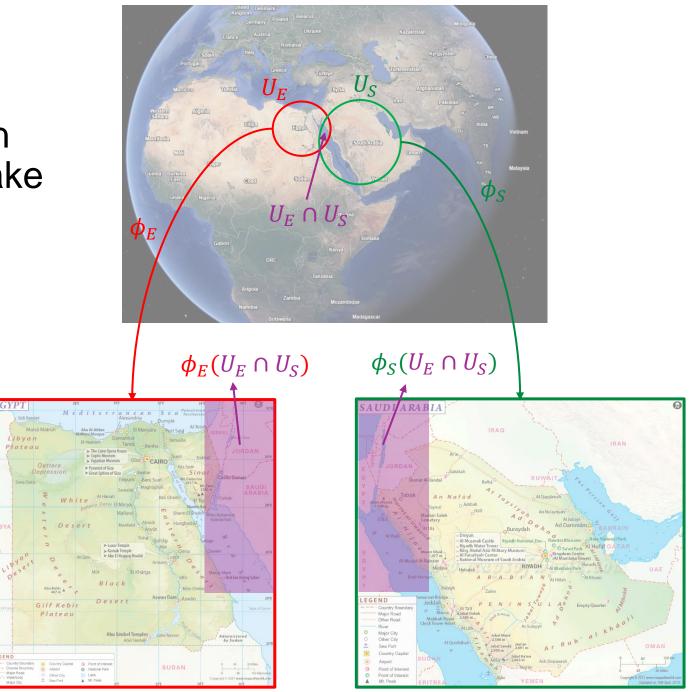
• A collection of charts that cover all of Earth S^2 is called an Atlas \mathcal{A} :

$$\mathcal{A}\coloneqq\{(U_i,\phi_i)\}_{i\in A}$$
 with the property that
$$S^2=\bigcup U_i$$



Charts

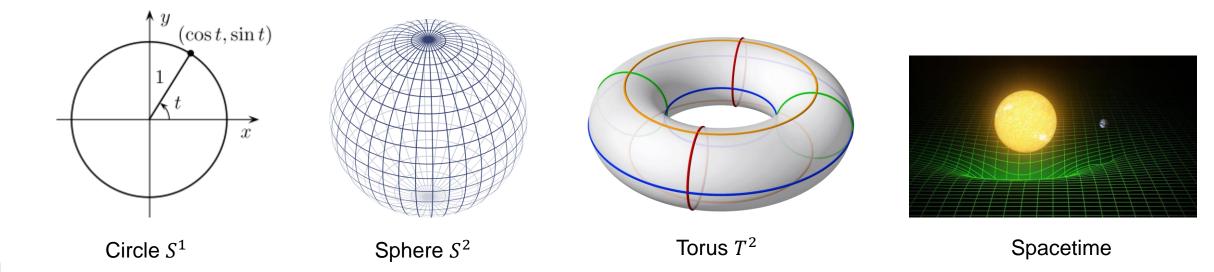
• However, in an overlap region (e.g. $U_E \cap U_S$) we need to make sure that the charts are compatible.



- Why differentiable structure?
- Atlas of the world
- Manifold theory
- Maps on a manifold
- Construction of the tangent bundle

- The fundamental object in differential geometry is a differentiable manifold.
- Intuitively, an n-dimensional manifold is a set that locally "looks like" an open subset of Euclidean space \mathbb{R}^n .

- The fundamental object in differential geometry is a differentiable manifold.
- Intuitively, an n-dimensional manifold is a set that locally "looks like" an open subset of Euclidean space \mathbb{R}^n .
- Examples:



- Intuitively, an n-dimensional manifold is a set that locally "looks like" an open subset of Euclidean space \mathbb{R}^n .
- Formally, a C^k differentiable manifold is the triple (M, σ, \mathcal{A}) where (M, σ) is a topological manifold* and \mathcal{A} is a C^k -atlas for M.

- Intuitively, an n-dimensional manifold is a set that locally "looks like" an open subset of Euclidean space \mathbb{R}^n .
- Formally, a C^k differentiable manifold is the triple (M, σ, \mathcal{A}) where (M, σ) is a topological manifold* and \mathcal{A} is a C^k -atlas for M.
- An C^k -atlas for M is a collection of charts that cover the entire manifold while satisfying certain overlap conditions.
- Given this C^k -differentiable structure on M, we can then talk about curves on manifolds, maps between manifolds, differentiability of maps,... etc.

Charts and Atlas of a manifold

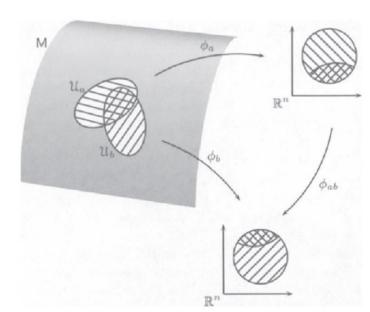
- Let (M, σ) be a set equipped with a topology.
- A chart for M is the pair (U, ϕ) with $U \subset M$ an open subset* of M and $\phi: U \to \mathbb{R}^n$ with $\phi(U) \subset \mathbb{R}^n$ is an open subset of \mathbb{R}^n .
- A C^k -atlas for M is the collection $\mathcal{A} \coloneqq \{(U_i, \phi_i)\}_{i \in A}$

with the properties that $M = \bigcup_{i \in A} U_i$ and whenever

 $U_a \cap U_b \neq \emptyset$ we have that the overlap/transition map

$$\phi_{ab} \coloneqq \phi_b \circ \phi_a^{-1} \colon \mathbb{R}^n \to \mathbb{R}^n$$

is of class C^k .



- Why differentiable structure?
- Atlas of the world
- Manifold theory
- Maps on a manifold
- Construction of the tangent bundle

- Why differentiable structure ?
- Atlas of the world
- Manifold theory
- Maps on a manifold
- Construction of the tangent bundle

