SCE 594: Special Topics in Intelligent Automation & Robotics

Topic 2 – Rigid Body Modeling

Lecture 6: Configuration space of a rigid body

Outline

- Topic 2 Intro
- Configuration Space of Rigid Bodies
- Homogeneous transformations
- Lie group structure of SO(3)

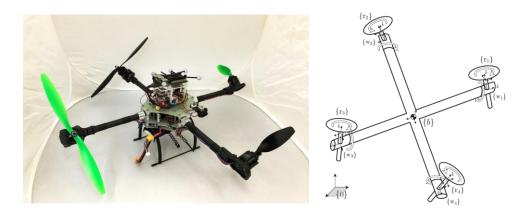
Outline

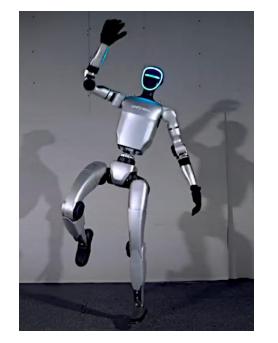
- Topic 2 Intro
- Configuration Space of Rigid Bodies
- Homogeneous transformations
- Lie group structure of *SO*(3)

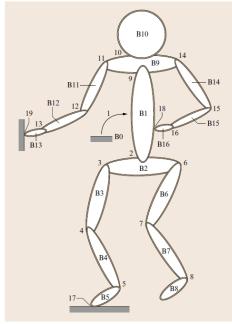
Topic 2: Rigid Body Modeling

 Most robotic mechanisms are systems of rigid bodies connected by joints.

 Understanding how to model and interconnect rigid bodies is fundamental!

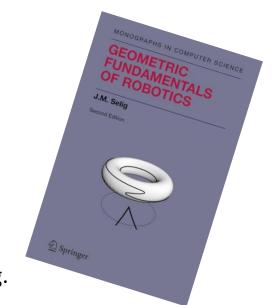


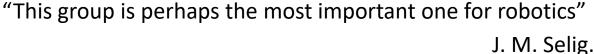




Configuration space of a rigid body

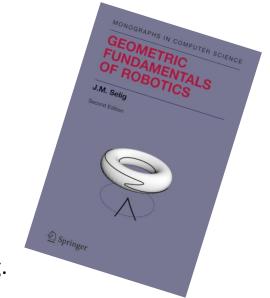
- We shall follow the Lie group approach for describing rigid body kinematics and dynamics.
- The configuration space of a rigid body is the group of proper isometries of Euclidean spaces, known as the special Euclidean group SE(3).

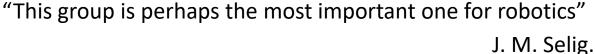




Configuration space of a rigid body

- In what follows, we will start from a coordinate-free approach to:
 - Differentiate abstract coordinate-free description of rigid body motion and its coordinate representation using matrices.
 - Highlight the mathematical nature of the different maps and spaces that arise when describing rigid bodies.

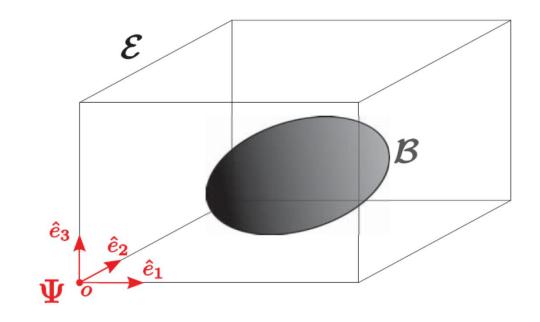




Outline

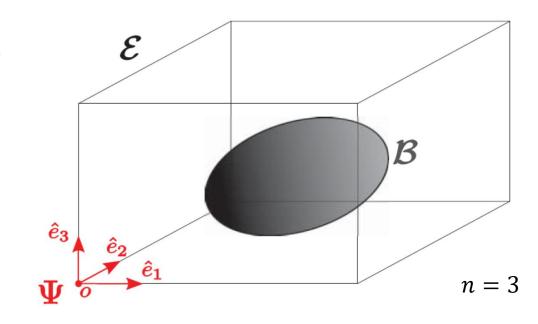
- Topic 2 Intro
- Configuration Space of Rigid Bodies
- Homogeneous transformations
- Lie group structure of SO(3)

- Concepts:
 - 1. n-dimensional Euclidean space \mathcal{E}
 - 2. Rigid body \mathcal{B}
 - 3. Coordinate-frame Ψ



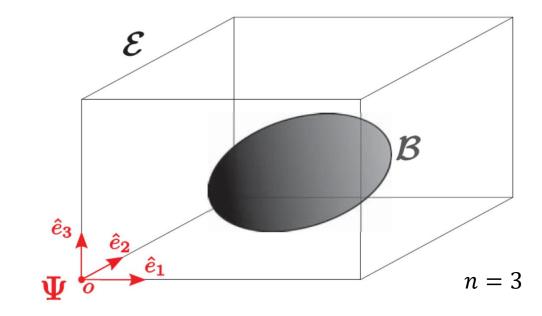
1. n-dimensional Euclidean space \mathcal{E} :

- An abstraction of the physical space we are living in.
- Associated to \mathcal{E} is a vector space \mathcal{E}_*
- Elements of \mathcal{E} are points $p \in \mathcal{E}$
- Elements of \mathcal{E}_* are free-vectors $v \in \mathcal{E}_*$
- \mathcal{E} is equipped with a metric $d: \mathcal{E} \times \mathcal{E} \to \mathbb{R}_+$ that defines the distance between any two points in \mathcal{E} .



2. Rigid body \mathcal{B}

- A rigid body is mathematically the pair (\mathcal{B}, ρ)
- $\mathcal{B} \subset \mathcal{E}$ is the set of points where matter is present
- $\rho: \mathcal{B} \to \mathbb{R}_+$ is the mass density function



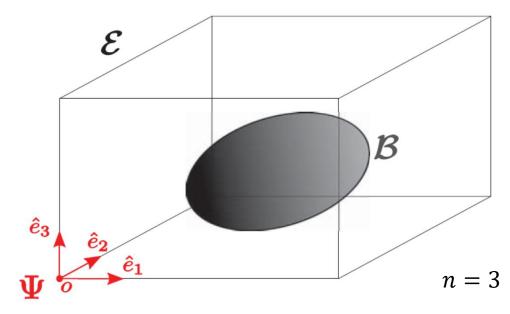
3. Coordinate-frame Ψ

• A coordinate frame for the Euclidean space \mathcal{E} is the 4-tuple $\Psi \coloneqq \{o, \hat{e}_1, \hat{e}_2, \hat{e}_3\}$

with $o \in \mathcal{E}$ denoting the origin of the frame and $\hat{e}_1, \hat{e}_2, \hat{e}_3$ are linearly-independent orthonormal free vectors.

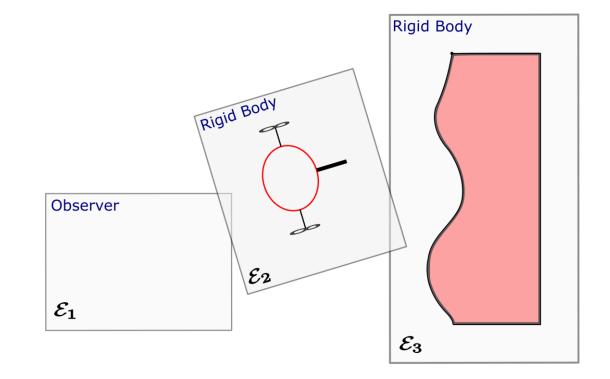
• Using Ψ , we can represent any points $p \in \mathcal{E}$ and any free vector $v \in \mathcal{E}_*$ using coordinates in \mathbb{R}^n :

$$p = p^i \hat{e}_i$$
 $v = v^i \hat{e}_i$



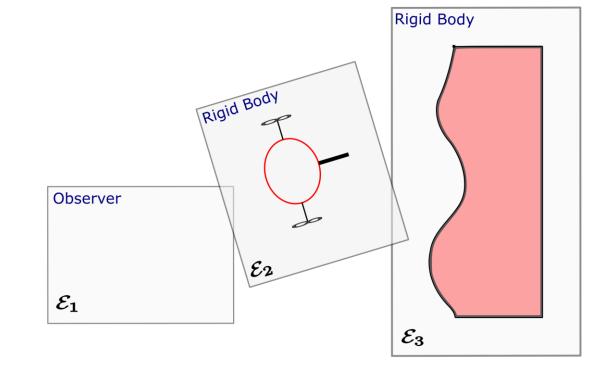
Euclidean system in 2D

- A Euclidean system consists of a collection of rigid bodies and observers.
- An observer is an example of a Euclidean space with the matter set being the empty set (e.g., a camera or external sensor).



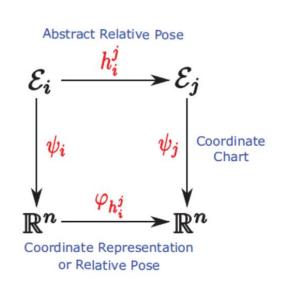
Relative Pose

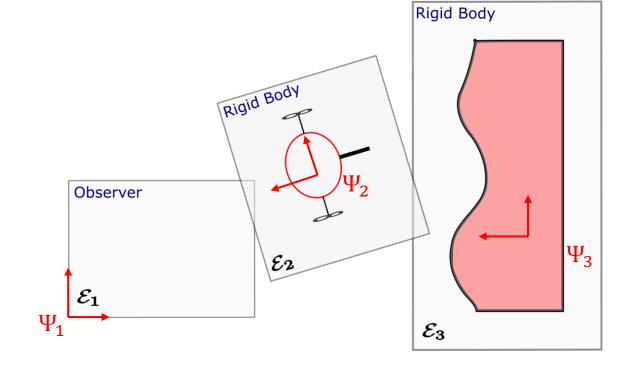
- The combined orientation and displacement of a Euclidean space is called the pose.
- The relative pose between two Euclidean spaces \mathcal{E}_i and \mathcal{E}_j with respect to each other will be denoted by $h_i^j : \mathcal{E}_i \to \mathcal{E}_j$.
- The set of relative poses between \mathcal{E}_i and \mathcal{E}_j will be denoted by $SE_i^j(n) \ni h_i^j$.



Relative Pose

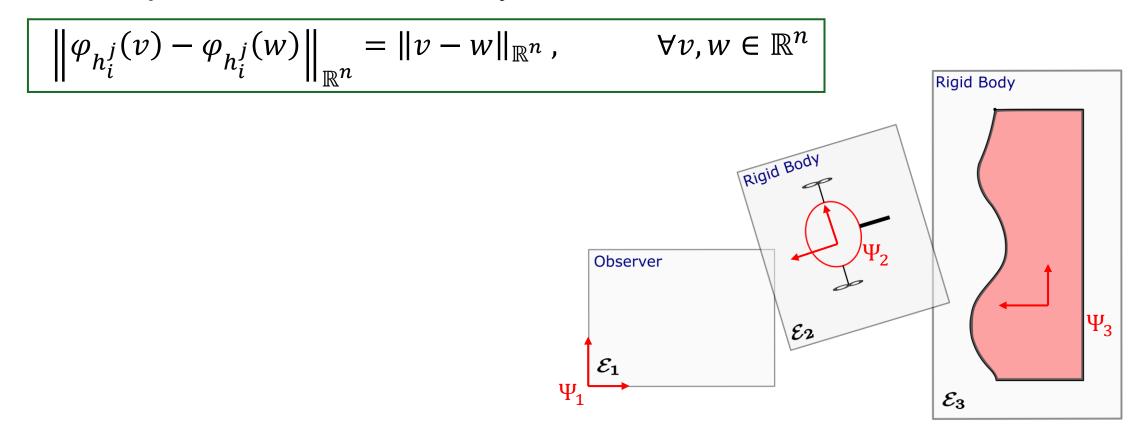
• By associating to every Euclidean space \mathcal{E}_k a coordinate frame Ψ_k , we can assign to every $h_i^j \in SE_i^j(n)$ a map $\varphi_{h_i^j} \colon \mathbb{R}^n \to \mathbb{R}^n$ which corresponds to the numerical representation of the relative pose of frames Ψ_i and Ψ_i .





Isometries on \mathbb{R}^n

- For $\varphi_{h_i^j}: \mathbb{R}^n \to \mathbb{R}^n$ to represent a rigid body transformation, it needs to preserve distances between points.
- Such a map is called an isometry on \mathbb{R}^n :

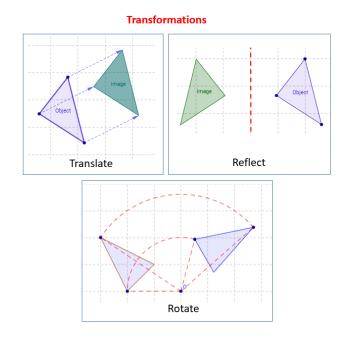


Isometries on \mathbb{R}^n

- For $\varphi_h: \mathbb{R}^n \to \mathbb{R}^n$ to represent a rigid body transformation, it needs to preserve distances between points.
- Such a map is called an isometry on \mathbb{R}^n :

$$\|\varphi_h(v) - \varphi_h(w)\|_{\mathbb{R}^n} = \|v - w\|_{\mathbb{R}^n}, \qquad \forall v, w \in \mathbb{R}^n$$

- Isometries on \mathbb{R}^n include:
 - Translation
 - Rotation
 - Reflection



Isometries on \mathbb{R}^n

• In general, an isometry $\varphi_h : \mathbb{R}^n \to \mathbb{R}^n$ can be written as

$$\varphi_h(v) = Mv + \xi$$

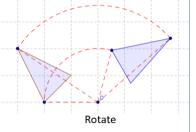
where $M \in O(n)$ is an orthogonal matrix and $\xi \in \mathbb{R}^3$ is a vector.

• The set O(n) is defined by

$$O(n) \coloneqq \{ \mathbf{M} \in R^{n \times n} \mid \mathbf{M} \mathbf{M}^{\mathsf{T}} = \mathbf{I}_{n} \}$$

O(n) has a group structure equipped with matrix multiplication

Transformations Object Reflect





• ξ represents translation

Special Orthogonal Group

- An element $M \in O(n)$ can have determinant*:
 - $\det M = +1 \rightarrow \text{Rotation}$
 - $\det M = -1 \rightarrow \text{Reflection}$

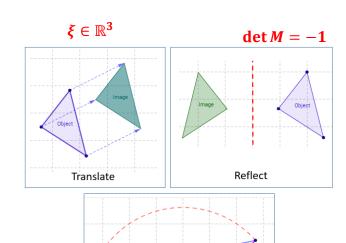
$$O(n) \coloneqq \{ \boldsymbol{M} \in R^{n \times n} \mid \boldsymbol{M} \boldsymbol{M}^{\top} = \boldsymbol{I_n} \}$$

• To exclude reflections, we restrict O(n) to the subgroup:

$$SO(n) \coloneqq \{ \mathbf{R} \in O(n) | \det \mathbf{R} = 1 \}$$

which is called the special orthogonal group.

• An element R of SO(n) is called a rotation matrix.



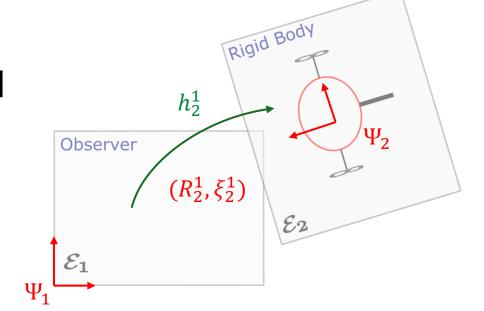
 $\det M = +1$

Special Euclidean Group

• Therefore, the isometries $\varphi_{h_i^j} \colon \mathbb{R}^n \to \mathbb{R}^n$ that represent rigid body rotations and translations are identified by the pair $\left(\mathbf{R}_i^j, \boldsymbol{\xi}_i^j\right) \in SO(n) \times \mathbb{R}^n$

where $\mathbf{R}_{i}^{j} \in SO(n)$ represents the relative orientation of Ψ_{i} and Ψ_{j} and $\boldsymbol{\xi}_{i}^{j} \in \mathbb{R}^{n}$ represents the relative displacement of Ψ_{i} and Ψ_{j} .

• The product $SO(n) \times \mathbb{R}^n =: SE(n)$ is called the special Euclidean group.



Special Euclidean Group

• The special Euclidean group $(SE(n), \blacksquare)$ is defined as

$$SE(n) := \{h = (R, \xi) | R \in SO(n), \xi \in \mathbb{R}^n\}$$

• Group operation \blacksquare : $SE(n) \times SE(n) \rightarrow SE(n)$ defined as

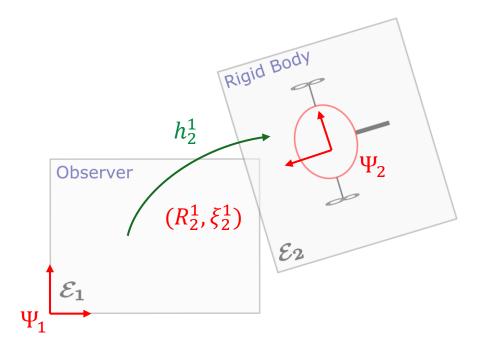
$$h_2 \blacksquare h_1 := (R_2 \cdot R_1, R_2 \cdot \xi_1 + \xi_2)$$

• Identity element $e \in SE(n)$:

$$e=(I_n,0)$$

• Inverse element of any $h \in SE(n)$:

$$h^{-1} = (R^{\mathsf{T}}, -R^{\mathsf{T}} \cdot \xi)$$



Rigid Body

Observer

Special Euclidean Group

• The special Euclidean group $(SE(n), \blacksquare)$ is defined as

$$SE(n) := \{h = (R, \xi) | R \in SO(n), \xi \in \mathbb{R}^n \}$$

• The above construction implies that SE(n) is isomorphic to $SO(n) \times \mathbb{R}^n$ as sets but not as groups.

• We say that $(SE(n), \blacksquare)$ is the semi-direct product of the groups $(SO(n), \cdot)$ and $(\mathbb{R}^n, +)$:

$$SE(n) = SO(n) \ltimes \mathbb{R}^n$$

Outline

- Topic 2 Intro
- Configuration Space of Rigid Bodies
- Homogeneous transformations
- Lie group structure of *SO*(3)

Homogeneous transformations

• Using concepts from projective geometry, we can represent $SE(n) = SO(n) \ltimes \mathbb{R}^n$ using matrices in dimension n+1.

$$SE(n) \to HM(n+1) \subset GL(n+1)$$
 $h = (R, \xi) \mapsto \begin{pmatrix} R & \xi \\ 0 & 1 \end{pmatrix} =: H.$

• The matrix $\mathbf{H} \in HM(n+1)$ is called the homogeneous representation of $\mathbf{h} = (\mathbf{R}, \boldsymbol{\xi}) \in SE(n)$.

Homogeneous transformations

 The group and inverse operations of SE(n) given earlier can be represented now as:

$$egin{aligned} m{H}_2m{H}_1 &= egin{pmatrix} R_2 & m{\xi}_2 \ 0 & 1 \end{pmatrix} egin{pmatrix} R_1 & m{\xi}_1 \ 0 & 1 \end{pmatrix} = egin{pmatrix} R_2m{R}_1 & R_2m{\xi}_1 + m{\xi}_2 \ 0 & 1 \end{pmatrix}, \ m{H}^{-1} &= egin{pmatrix} R & m{\xi} \ 0 & 1 \end{pmatrix}^{-1} &= egin{pmatrix} R^{\top} & -R^{\top}m{\xi} \ 0 & 1 \end{pmatrix}. \end{aligned}$$

Homogeneous transformations

• Similarly, the action of SE(n) on \mathbb{R}^n is now identified by the action of HM(n+1) on \mathbb{R}^{n+1}

$$HV = \begin{pmatrix} R & \xi \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v \\ 1 \end{pmatrix} = \begin{pmatrix} Rv + \xi \\ 1 \end{pmatrix}$$

where $V \in \mathbb{R}^{n+1}$ is called the homogeneous coordinates of $v \in \mathbb{R}^n$

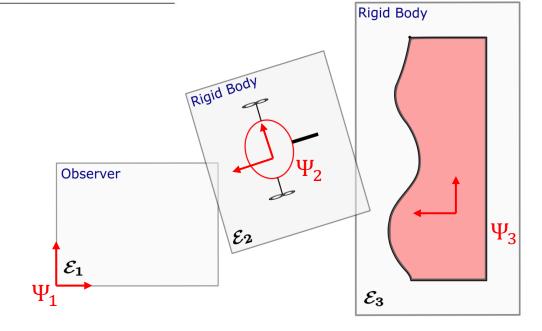
Summary

 We introduced different mathematical objects that describe the configuration of a rigid body.

Abstract Configuration	$h_i \in SE_i(n)$
Abstract Relative Pose	$h_i^j \in SE_i^j(n)$
Rotation Matrix & Translation Vector	$(\boldsymbol{R}_i^j,\boldsymbol{\xi}_i^j)\in SE(n)$
Homogeneous Matrix	$\boldsymbol{H}_i^j \in HM(n+1)$

From now on:

- We will refer to the configuration space of a rigid body as SE(n).
- We will work with homogeneous matrices for calculations.
- We will abusively refer to the space of homogeneous matrices as SE(n), and thus write $H \in SE(n)$.



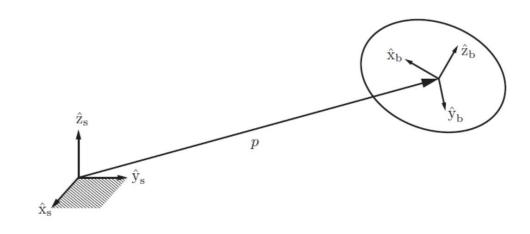
Outline

- Topic 2 Intro
- Configuration Space of Rigid Bodies
- Homogeneous transformations
- Lie group structure of SO(3)

Lie group SE(n)

- So far we've seen that SE(n) is a group made up of the semi-direct product of two groups SO(n) and \mathbb{R}^n .
- Now to talk about the kinematics and dynamics of rigid body motion, we need to start considering SE(n) as a manifold.
- Therefore, SE(n) has the structure of a Lie group.
- Moreover, SO(n) itself is a Lie sub-group.

$$SE(n) = SO(n) \ltimes \mathbb{R}^n$$

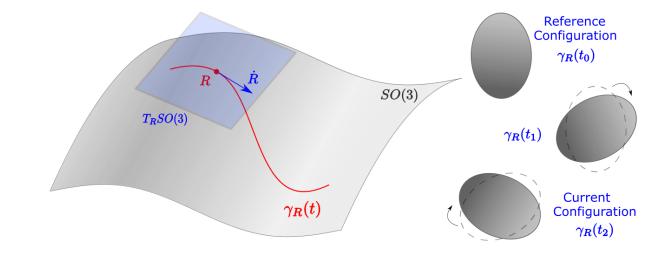


Rigid body rotations

- In what follows, we focus on the Lie group structure of SO(3).
- A rigid body rotational motion is represented mathematically by a curve

$$\gamma_R: I \subset \mathbb{R} \to SO(3)$$

$$t \mapsto \gamma_R(t) =: \mathbf{R}_t$$



Rigid body rotations

- In what follows, we focus on the Lie group structure of SO(3).
- A rigid body rotational motion is represented mathematically by a curve

$$\gamma_R: I \subset \mathbb{R} \to SO(3)$$
 $t \mapsto \gamma_R(t) =: \mathbf{R}_t$

Next Up!

How do we represent the relation between rateof-change of orientation and angular velocity?

